These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 37295119)

  • 1. Cavity Quantum Electrodynamics with Hyperbolic van der Waals Materials.
    Ashida Y; İmamoğlu A; Demler E
    Phys Rev Lett; 2023 May; 130(21):216901. PubMed ID: 37295119
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cavity QED of the graphene cyclotron transition.
    Hagenmüller D; Ciuti C
    Phys Rev Lett; 2012 Dec; 109(26):267403. PubMed ID: 23368618
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cavity Control of Excitons in Two-Dimensional Materials.
    Latini S; Ronca E; De Giovannini U; Hübener H; Rubio A
    Nano Lett; 2019 Jun; 19(6):3473-3479. PubMed ID: 31046291
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exciton-polaritons in van der Waals heterostructures embedded in tunable microcavities.
    Dufferwiel S; Schwarz S; Withers F; Trichet AA; Li F; Sich M; Del Pozo-Zamudio O; Clark C; Nalitov A; Solnyshkov DD; Malpuech G; Novoselov KS; Smith JM; Skolnick MS; Krizhanovskii DN; Tartakovskii AI
    Nat Commun; 2015 Oct; 6():8579. PubMed ID: 26446783
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancing Cavity Quantum Electrodynamics via Antisqueezing: Synthetic Ultrastrong Coupling.
    Leroux C; Govia LCG; Clerk AA
    Phys Rev Lett; 2018 Mar; 120(9):093602. PubMed ID: 29547301
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices.
    Cao Y; Fatemi V; Demir A; Fang S; Tomarken SL; Luo JY; Sanchez-Yamagishi JD; Watanabe K; Taniguchi T; Kaxiras E; Ashoori RC; Jarillo-Herrero P
    Nature; 2018 Apr; 556(7699):80-84. PubMed ID: 29512654
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantum topology in the ultrastrong coupling regime.
    Downing CA; Toghill AJ
    Sci Rep; 2022 Jul; 12(1):11630. PubMed ID: 35804013
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sub-cycle switch-on of ultrastrong light-matter interaction.
    Günter G; Anappara AA; Hees J; Sell A; Biasiol G; Sorba L; De Liberato S; Ciuti C; Tredicucci A; Leitenstorfer A; Huber R
    Nature; 2009 Mar; 458(7235):178-81. PubMed ID: 19279631
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Probing low-energy hyperbolic polaritons in van der Waals crystals with an electron microscope.
    Govyadinov AA; Konečná A; Chuvilin A; Vélez S; Dolado I; Nikitin AY; Lopatin S; Casanova F; Hueso LE; Aizpurua J; Hillenbrand R
    Nat Commun; 2017 Jul; 8(1):95. PubMed ID: 28733660
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spin-correlated exciton-polaritons in a van der Waals magnet.
    Dirnberger F; Bushati R; Datta B; Kumar A; MacDonald AH; Baldini E; Menon VM
    Nat Nanotechnol; 2022 Oct; 17(10):1060-1064. PubMed ID: 36097046
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced near-field coupling and tunable topological transitions in hyperbolic van der Waals metasurfaces for optical nanomanipulation.
    Wang X; Chang K; Liu W; Wang H; Chen J; Liu K; Chen J; Chen K
    Nanoscale; 2022 May; 14(18):7075-7082. PubMed ID: 35475504
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dielectric Genome of van der Waals Heterostructures.
    Andersen K; Latini S; Thygesen KS
    Nano Lett; 2015 Jul; 15(7):4616-21. PubMed ID: 26047386
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride.
    Dai S; Fei Z; Ma Q; Rodin AS; Wagner M; McLeod AS; Liu MK; Gannett W; Regan W; Watanabe K; Taniguchi T; Thiemens M; Dominguez G; Castro Neto AH; Zettl A; Keilmann F; Jarillo-Herrero P; Fogler MM; Basov DN
    Science; 2014 Mar; 343(6175):1125-9. PubMed ID: 24604197
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photonic crystal cavities from hexagonal boron nitride.
    Kim S; Fröch JE; Christian J; Straw M; Bishop J; Totonjian D; Watanabe K; Taniguchi T; Toth M; Aharonovich I
    Nat Commun; 2018 Jul; 9(1):2623. PubMed ID: 29976925
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cavity QED with a Bose-Einstein condensate.
    Brennecke F; Donner T; Ritter S; Bourdel T; Köhl M; Esslinger T
    Nature; 2007 Nov; 450(7167):268-71. PubMed ID: 17994093
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Infrared hyperbolic metasurface based on nanostructured van der Waals materials.
    Li P; Dolado I; Alfaro-Mozaz FJ; Casanova F; Hueso LE; Liu S; Edgar JH; Nikitin AY; Vélez S; Hillenbrand R
    Science; 2018 Feb; 359(6378):892-896. PubMed ID: 29472478
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrastrong coupling of the cyclotron transition of a 2D electron gas to a THz metamaterial.
    Scalari G; Maissen C; Turcinková D; Hagenmüller D; De Liberato S; Ciuti C; Reichl C; Schuh D; Wegscheider W; Beck M; Faist J
    Science; 2012 Mar; 335(6074):1323-6. PubMed ID: 22422976
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microcavity phonon polaritons from the weak to the ultrastrong phonon-photon coupling regime.
    Barra-Burillo M; Muniain U; Catalano S; Autore M; Casanova F; Hueso LE; Aizpurua J; Esteban R; Hillenbrand R
    Nat Commun; 2021 Oct; 12(1):6206. PubMed ID: 34707119
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of the mechanical properties of van der Waals heterostructures of stanene adsorbed on graphene, hexagonal boron-nitride and silicon carbide.
    Rahman MH; Chowdhury EH; Redwan DA; Mitra S; Hong S
    Phys Chem Chem Phys; 2021 Mar; 23(9):5244-5253. PubMed ID: 33629670
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gauge ambiguities imply Jaynes-Cummings physics remains valid in ultrastrong coupling QED.
    Stokes A; Nazir A
    Nat Commun; 2019 Jan; 10(1):499. PubMed ID: 30700701
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.