These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
287 related articles for article (PubMed ID: 37295138)
41. Natural Language Processing Applications in the Clinical Neurosciences: A Machine Learning Augmented Systematic Review. Buchlak QD; Esmaili N; Bennett C; Farrokhi F Acta Neurochir Suppl; 2022; 134():277-289. PubMed ID: 34862552 [TBL] [Abstract][Full Text] [Related]
42. Biomedical and clinical English model packages for the Stanza Python NLP library. Zhang Y; Zhang Y; Qi P; Manning CD; Langlotz CP J Am Med Inform Assoc; 2021 Aug; 28(9):1892-1899. PubMed ID: 34157094 [TBL] [Abstract][Full Text] [Related]
43. Annotated dataset creation through large language models for non-english medical NLP. Frei J; Kramer F J Biomed Inform; 2023 Sep; 145():104478. PubMed ID: 37625508 [TBL] [Abstract][Full Text] [Related]
44. Extracting clinical named entity for pituitary adenomas from Chinese electronic medical records. Fang A; Hu J; Zhao W; Feng M; Fu J; Feng S; Lou P; Ren H; Chen X BMC Med Inform Decis Mak; 2022 Mar; 22(1):72. PubMed ID: 35321705 [TBL] [Abstract][Full Text] [Related]
45. Obtaining Knowledge in Pathology Reports Through a Natural Language Processing Approach With Classification, Named-Entity Recognition, and Relation-Extraction Heuristics. Oliwa T; Maron SB; Chase LM; Lomnicki S; Catenacci DVT; Furner B; Volchenboum SL JCO Clin Cancer Inform; 2019 Aug; 3():1-8. PubMed ID: 31365274 [TBL] [Abstract][Full Text] [Related]
46. Ensemble pretrained language models to extract biomedical knowledge from literature. Li Z; Wei Q; Huang LC; Li J; Hu Y; Chuang YS; He J; Das A; Keloth VK; Yang Y; Diala CS; Roberts KE; Tao C; Jiang X; Zheng WJ; Xu H J Am Med Inform Assoc; 2024 Sep; 31(9):1904-1911. PubMed ID: 38520725 [TBL] [Abstract][Full Text] [Related]
47. A study of machine-learning-based approaches to extract clinical entities and their assertions from discharge summaries. Jiang M; Chen Y; Liu M; Rosenbloom ST; Mani S; Denny JC; Xu H J Am Med Inform Assoc; 2011; 18(5):601-6. PubMed ID: 21508414 [TBL] [Abstract][Full Text] [Related]
48. Generative large language models are all-purpose text analytics engines: text-to-text learning is all your need. Peng C; Yang X; Chen A; Yu Z; Smith KE; Costa AB; Flores MG; Bian J; Wu Y J Am Med Inform Assoc; 2024 Sep; 31(9):1892-1903. PubMed ID: 38630580 [TBL] [Abstract][Full Text] [Related]
49. Information Extraction from Medical Texts with BERT Using Human-in-the-Loop Labeling. Šuvalov H; Laur S; Kolde R Stud Health Technol Inform; 2023 May; 302():831-832. PubMed ID: 37203510 [TBL] [Abstract][Full Text] [Related]
50. Ensembles of natural language processing systems for portable phenotyping solutions. Liu C; Ta CN; Rogers JR; Li Z; Lee J; Butler AM; Shang N; Kury FSP; Wang L; Shen F; Liu H; Ena L; Friedman C; Weng C J Biomed Inform; 2019 Dec; 100():103318. PubMed ID: 31655273 [TBL] [Abstract][Full Text] [Related]
51. Medical Information Extraction in the Age of Deep Learning. Hahn U; Oleynik M Yearb Med Inform; 2020 Aug; 29(1):208-220. PubMed ID: 32823318 [TBL] [Abstract][Full Text] [Related]
52. Evaluation of clinical named entity recognition methods for Serbian electronic health records. Kaplar A; Stošović M; Kaplar A; Brković V; Naumović R; Kovačević A Int J Med Inform; 2022 Aug; 164():104805. PubMed ID: 35653828 [TBL] [Abstract][Full Text] [Related]
53. Web 2.0-based crowdsourcing for high-quality gold standard development in clinical natural language processing. Zhai H; Lingren T; Deleger L; Li Q; Kaiser M; Stoutenborough L; Solti I J Med Internet Res; 2013 Apr; 15(4):e73. PubMed ID: 23548263 [TBL] [Abstract][Full Text] [Related]
54. Entity recognition from clinical texts via recurrent neural network. Liu Z; Yang M; Wang X; Chen Q; Tang B; Wang Z; Xu H BMC Med Inform Decis Mak; 2017 Jul; 17(Suppl 2):67. PubMed ID: 28699566 [TBL] [Abstract][Full Text] [Related]
55. Contextualized medication information extraction using Transformer-based deep learning architectures. Chen A; Yu Z; Yang X; Guo Y; Bian J; Wu Y J Biomed Inform; 2023 Jun; 142():104370. PubMed ID: 37100106 [TBL] [Abstract][Full Text] [Related]
56. Comparing Different Methods for Named Entity Recognition in Portuguese Neurology Text. Lopes F; Teixeira C; Gonçalo Oliveira H J Med Syst; 2020 Feb; 44(4):77. PubMed ID: 32112285 [TBL] [Abstract][Full Text] [Related]
57. Are synthetic clinical notes useful for real natural language processing tasks: A case study on clinical entity recognition. Li J; Zhou Y; Jiang X; Natarajan K; Pakhomov SV; Liu H; Xu H J Am Med Inform Assoc; 2021 Sep; 28(10):2193-2201. PubMed ID: 34272955 [TBL] [Abstract][Full Text] [Related]
58. Clinical Text Data in Machine Learning: Systematic Review. Spasic I; Nenadic G JMIR Med Inform; 2020 Mar; 8(3):e17984. PubMed ID: 32229465 [TBL] [Abstract][Full Text] [Related]
59. Development and application of a high throughput natural language processing architecture to convert all clinical documents in a clinical data warehouse into standardized medical vocabularies. Afshar M; Dligach D; Sharma B; Cai X; Boyda J; Birch S; Valdez D; Zelisko S; Joyce C; Modave F; Price R J Am Med Inform Assoc; 2019 Nov; 26(11):1364-1369. PubMed ID: 31145455 [TBL] [Abstract][Full Text] [Related]
60. Capturing the Patient's Perspective: a Review of Advances in Natural Language Processing of Health-Related Text. Gonzalez-Hernandez G; Sarker A; O'Connor K; Savova G Yearb Med Inform; 2017 Aug; 26(1):214-227. PubMed ID: 29063568 [No Abstract] [Full Text] [Related] [Previous] [Next] [New Search]