These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
192 related articles for article (PubMed ID: 37295362)
1. Biochemical fulvic acid derived amorphous carbon modified microcrystalline graphite as low-cost anode for potassium-ion storage. Zhuo P; Jiang J; Jiang Y; Hao Y; He Q; Chen T; Ding E; Zhang Y; Han Y; Si W; Ju Z; Cao Y; Xing Y; Gui X J Colloid Interface Sci; 2023 Oct; 648():108-116. PubMed ID: 37295362 [TBL] [Abstract][Full Text] [Related]
2. Advancements and Prospects of Graphite Anode for Potassium-Ion Batteries. Yu J; Jiang M; Zhang W; Li G; Soomro RA; Sun N; Xu B Small Methods; 2023 Nov; 7(11):e2300708. PubMed ID: 37605458 [TBL] [Abstract][Full Text] [Related]
3. Defect Engineering of Disordered Carbon Anodes with Ultra-High Heteroatom Doping Through a Supermolecule-Mediated Strategy for Potassium-Ion Hybrid Capacitors. Zhao L; Sun S; Lin J; Zhong L; Chen L; Guo J; Yin J; Alshareef HN; Qiu X; Zhang W Nanomicro Lett; 2023 Jan; 15(1):41. PubMed ID: 36705765 [TBL] [Abstract][Full Text] [Related]
4. Tailoring Nitrogen Species in Disk-Like Carbon Anode Towards Superior Potassium Ion Storage. Wang G; Wang W; He X; Li J; Yu L; Peng B; Liu R; Zeng S; Zhang G Small; 2022 Jul; 18(30):e2203288. PubMed ID: 35780484 [TBL] [Abstract][Full Text] [Related]
5. Self-Propagating Fabrication of a 3D Graphite@rGO Film Anode for High-performance Potassium-Ion Batteries. Li G; Li T; Jiang M; Somoro RA; Sun N; Xu B ACS Appl Mater Interfaces; 2024 Aug; 16(32):42118-42127. PubMed ID: 39094118 [TBL] [Abstract][Full Text] [Related]
6. Nitrogen and Oxygen Co-Doped Porous Hard Carbon Nanospheres with Core-Shell Architecture as Anode Materials for Superior Potassium-Ion Storage. Chong S; Yuan L; Li T; Shu C; Qiao S; Dong S; Liu Z; Yang J; Liu HK; Dou SX; Huang W Small; 2022 Feb; 18(8):e2104296. PubMed ID: 34873861 [TBL] [Abstract][Full Text] [Related]
7. High-Performance Dual-Ion Battery Based on Silicon-Graphene Composite Anode and Expanded Graphite Cathode. Liu G; Liu X; Ma X; Tang X; Zhang X; Dong J; Ma Y; Zang X; Cao N; Shao Q Molecules; 2023 May; 28(11):. PubMed ID: 37298755 [TBL] [Abstract][Full Text] [Related]
8. Carbon-reinforced Ni Deng XG; Fan LQ; Fu XY; Tang T; Lin SH; Chen L; Yu FD; Huang YF; Huang ML; Wu JH J Colloid Interface Sci; 2024 May; 661():237-248. PubMed ID: 38301462 [TBL] [Abstract][Full Text] [Related]
9. Homologous Strategy to Construct High-Performance Coupling Electrodes for Advanced Potassium-Ion Hybrid Capacitors. Xu Y; Ruan J; Pang Y; Sun H; Liang C; Li H; Yang J; Zheng S Nanomicro Lett; 2020 Oct; 13(1):14. PubMed ID: 34138205 [TBL] [Abstract][Full Text] [Related]
10. Nitrogen and Phosphorus Dual-Doped Multilayer Graphene as Universal Anode for Full Carbon-Based Lithium and Potassium Ion Capacitors. Luan Y; Hu R; Fang Y; Zhu K; Cheng K; Yan J; Ye K; Wang G; Cao D Nanomicro Lett; 2019 Apr; 11(1):30. PubMed ID: 34137976 [TBL] [Abstract][Full Text] [Related]
11. Expanding Interlayer Spacing of Hard Carbon by Natural K Wu F; Liu L; Yuan Y; Li Y; Bai Y; Li T; Lu J; Wu C ACS Appl Mater Interfaces; 2018 Aug; 10(32):27030-27038. PubMed ID: 30020762 [TBL] [Abstract][Full Text] [Related]
12. Defect-rich and N-doped hard carbon as a sustainable anode for high-energy lithium-ion capacitors. Jiang J; Zhang Y; Li Z; An Y; Zhu Q; Xu Y; Zang S; Dou H; Zhang X J Colloid Interface Sci; 2020 May; 567():75-83. PubMed ID: 32036116 [TBL] [Abstract][Full Text] [Related]
13. Nitrogen-Doped Porous Carbon Derived from Coal for High-Performance Dual-Carbon Lithium-Ion Capacitors. Jiang J; Shen Q; Chen Z; Wang S Nanomaterials (Basel); 2023 Sep; 13(18):. PubMed ID: 37764554 [TBL] [Abstract][Full Text] [Related]
14. Improving Natural Microcrystalline Graphite Performances by a Dual Modification Strategy toward Practical Application of Lithium Ion Batteries. Peng J; Tan H; Wu Z; Tang Y; Liu P; He L; Yang J; Hu S; Wang S; Wang X ACS Appl Mater Interfaces; 2023 Dec; 15(51):59552-59560. PubMed ID: 38088861 [TBL] [Abstract][Full Text] [Related]
15. Biomass-derived carbon-sulfur hybrids boosting electrochemical kinetics to achieve high potassium storage performance. Cao B; Gao S; Ma Y; Zhang D; Guo Z; Du M; Xin Z; Zhou C; Liu H J Colloid Interface Sci; 2024 May; 661():598-605. PubMed ID: 38308898 [TBL] [Abstract][Full Text] [Related]
16. Dual-Carbon Electrode-Based High-Energy-Density Potassium-Ion Hybrid Capacitor. Cao J; Xu H; Zhong J; Li X; Li S; Wang Y; Zhang M; Deng H; Wang Y; Cui C; Hossain M; Cheng Y; Fan L; Wang L; Wang T; Zhu J; Lu B ACS Appl Mater Interfaces; 2021 Feb; 13(7):8497-8506. PubMed ID: 33586950 [TBL] [Abstract][Full Text] [Related]
17. 3D ordered amorphous and porous TiO Li H; Sun X; Gou H; Zhang C; Wang G J Colloid Interface Sci; 2023 May; 638():161-172. PubMed ID: 36736117 [TBL] [Abstract][Full Text] [Related]
18. KOH activated nitrogen and oxygen co-doped tubular carbon clusters as anode material for boosted potassium-ion storage capability. Zhang Y; Tao J; Zhang C; Zhao H; Lei Y Nanotechnology; 2022 May; 33(29):. PubMed ID: 35390780 [TBL] [Abstract][Full Text] [Related]
19. Design of heterostructured hydrangea-like FeS Liang H; Wang X; Shi J; Chen J; Tian W; Huang M; Wu J; Zhu Y; Wang H J Colloid Interface Sci; 2024 Jun; 664():96-106. PubMed ID: 38460388 [TBL] [Abstract][Full Text] [Related]
20. UIO-66-NH Liu Y; Huang B; Zheng L; Shen M; Pu Z; Shao Y; Li X; Liao S RSC Adv; 2020 Dec; 11(2):1039-1049. PubMed ID: 35423669 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]