BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 37295423)

  • 21. Influence of feeder cells on transcriptomic analysis of pluripotent stem cells.
    Wan H; Fu R; Tong M; Wang Y; Wang L; Wang S; Zhang Y; Li W; Wang XJ; Feng G
    Cell Prolif; 2022 Feb; 55(2):e13189. PubMed ID: 35060660
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Human Pluripotent Stem Cell-Derived Neurons Are Functionally Mature In Vitro and Integrate into the Mouse Striatum Following Transplantation.
    Comella-Bolla A; Orlandi JG; Miguez A; Straccia M; García-Bravo M; Bombau G; Galofré M; Sanders P; Carrere J; Segovia JC; Blasi J; Allen ND; Alberch J; Soriano J; Canals JM
    Mol Neurobiol; 2020 Jun; 57(6):2766-2798. PubMed ID: 32356172
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Functional Pituitary Tissue Formation.
    Ozone C; Suga H
    Methods Mol Biol; 2017; 1597():57-65. PubMed ID: 28361310
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Facile engineering of xeno-free microcarriers for the scalable cultivation of human pluripotent stem cells in stirred suspension.
    Fan Y; Hsiung M; Cheng C; Tzanakakis ES
    Tissue Eng Part A; 2014 Feb; 20(3-4):588-99. PubMed ID: 24098972
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Synergistic effect of medium, matrix, and exogenous factors on the adhesion and growth of human pluripotent stem cells under defined, xeno-free conditions.
    Meng G; Liu S; Rancourt DE
    Stem Cells Dev; 2012 Jul; 21(11):2036-48. PubMed ID: 22149941
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Functional Pituitary Tissue Generation from Human Embryonic Stem Cells.
    Kano M; Suga H; Kasai T; Ozone C; Arima H
    Curr Protoc Neurosci; 2018 Apr; 83(1):e48. PubMed ID: 30040229
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Clinical-scale purification of pluripotent stem cell derivatives for cell-based therapies.
    Rodrigues GM; Rodrigues CA; Fernandes TG; Diogo MM; Cabral JM
    Biotechnol J; 2015 Aug; 10(8):1103-14. PubMed ID: 25851544
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A critical look: Challenges in differentiating human pluripotent stem cells into desired cell types and organoids.
    Fowler JL; Ang LT; Loh KM
    Wiley Interdiscip Rev Dev Biol; 2020 May; 9(3):e368. PubMed ID: 31746148
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Culturing human pluripotent stem cells for regenerative medicine.
    Ozawa H; Matsumoto T; Nakagawa M
    Expert Opin Biol Ther; 2023; 23(6):479-489. PubMed ID: 37345510
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Exploring the effects of cell seeding density on the differentiation of human pluripotent stem cells to brain microvascular endothelial cells.
    Wilson HK; Canfield SG; Hjortness MK; Palecek SP; Shusta EV
    Fluids Barriers CNS; 2015 May; 12():13. PubMed ID: 25994964
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Differentiation of human pluripotent stem cells into nephron progenitor cells in a serum and feeder free system.
    Kang M; Han YM
    PLoS One; 2014; 9(4):e94888. PubMed ID: 24728509
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Efficient differentiation of human pluripotent stem cells into cardiomyocytes on cell sorting thermoresponsive surface.
    Sung TC; Su HC; Ling QD; Kumar SS; Chang Y; Hsu ST; Higuchi A
    Biomaterials; 2020 Sep; 253():120060. PubMed ID: 32450407
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The combination of dextran sulphate and polyvinyl alcohol prevents excess aggregation and promotes proliferation of pluripotent stem cells in suspension culture.
    Tang X; Wu H; Xie J; Wang N; Chen Q; Zhong Z; Qiu Y; Wang J; Li X; Situ P; Lai L; Zern MA; Chen H; Duan Y
    Cell Prolif; 2021 Sep; 54(9):e13112. PubMed ID: 34390064
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Integrated platform for production and purification of human pluripotent stem cell-derived neural precursors.
    Rodrigues GM; Matos AF; Fernandes TG; Rodrigues CA; Peitz M; Haupt S; Diogo MM; Brüstle O; Cabral JM
    Stem Cell Rev Rep; 2014 Apr; 10(2):151-61. PubMed ID: 24221956
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Chemically defined and xenogeneic-free differentiation of human pluripotent stem cells into definitive endoderm in 3D culture.
    Diekmann U; Wolling H; Dettmer R; Niwolik I; Naujok O; Buettner FFR
    Sci Rep; 2019 Jan; 9(1):996. PubMed ID: 30700818
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Rapid, efficient, and simple motor neuron differentiation from human pluripotent stem cells.
    Shimojo D; Onodera K; Doi-Torii Y; Ishihara Y; Hattori C; Miwa Y; Tanaka S; Okada R; Ohyama M; Shoji M; Nakanishi A; Doyu M; Okano H; Okada Y
    Mol Brain; 2015 Dec; 8(1):79. PubMed ID: 26626025
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characterization of epithelial cell adhesion molecule as a surface marker on undifferentiated human embryonic stem cells.
    Ng VY; Ang SN; Chan JX; Choo AB
    Stem Cells; 2010 Jan; 28(1):29-35. PubMed ID: 19785009
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Generation of Gastrointestinal Organoids from Human Pluripotent Stem Cells.
    Múnera JO; Wells JM
    Methods Mol Biol; 2017; 1597():167-177. PubMed ID: 28361317
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Generation of lung organoids from human pluripotent stem cells in vitro.
    Miller AJ; Dye BR; Ferrer-Torres D; Hill DR; Overeem AW; Shea LD; Spence JR
    Nat Protoc; 2019 Feb; 14(2):518-540. PubMed ID: 30664680
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Development of substrates for the culture of human pluripotent stem cells.
    Kawase E; Nakatsuji N
    Biomater Sci; 2023 May; 11(9):2974-2987. PubMed ID: 37009904
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.