BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 37295476)

  • 1. Heterotrophic growth of Galdieria sulphuraria on residues from aquaculture and fish processing industries.
    Pleissner D; Schönfelder S; Händel N; Dalichow J; Ettinger J; Kvangarsnes K; Dauksas E; Rustad T; Cropotova J
    Bioresour Technol; 2023 Sep; 384():129281. PubMed ID: 37295476
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heterotrophic cultivation of Galdieria sulphuraria under non-sterile conditions in digestate and hydrolyzed straw.
    Pleissner D; Lindner AV; Händel N
    Bioresour Technol; 2021 Oct; 337():125477. PubMed ID: 34320757
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Life cycle assessment of hetero- and phototrophic as well as combined cultivations of Galdieria sulphuraria.
    Thielemann AK; Smetana S; Pleissner D
    Bioresour Technol; 2021 Sep; 335():125227. PubMed ID: 33992913
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An automated, modular system for organic waste utilization using heterotrophic alga Galdieria sulphuraria: Design considerations and sustainability.
    Julius Pahmeyer M; Anusha Siddiqui S; Pleissner D; Gołaszewski J; Heinz V; Smetana S
    Bioresour Technol; 2022 Mar; 348():126800. PubMed ID: 35121101
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Productivity, amino acid profile, and protein bioaccessibility in heterotrophic batch cultivation of Galdieria sulphuraria.
    Abiusi F; Tumulero B; Neutsch L; Mathys A
    Bioresour Technol; 2024 May; 399():130628. PubMed ID: 38521173
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Removal of sugars in wastewater from food production through heterotrophic growth of
    Scherhag P; Ackermann JU
    Eng Life Sci; 2021 Mar; 21(3-4):233-241. PubMed ID: 33716621
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cultivation of the heterotrophic microalga Galdieria sulphuraria on food waste: A Life Cycle Assessment.
    Thielemann AK; Smetana S; Pleissner D
    Bioresour Technol; 2021 Nov; 340():125637. PubMed ID: 34315124
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Growth and phycocyanin synthesis in the heterotrophic microalga Galdieria sulphuraria on substrates made of food waste from restaurants and bakeries.
    Sloth JK; Jensen HC; Pleissner D; Eriksen NT
    Bioresour Technol; 2017 Aug; 238():296-305. PubMed ID: 28454004
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microalgae as human food: chemical and nutritional characteristics of the thermo-acidophilic microalga Galdieria sulphuraria.
    Graziani G; Schiavo S; Nicolai MA; Buono S; Fogliano V; Pinto G; Pollio A
    Food Funct; 2013 Jan; 4(1):144-52. PubMed ID: 23104098
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cultivation of the Acidophilic Microalgae
    di Cicco MR; Palmieri M; Altieri S; Ciniglia C; Lubritto C
    Int J Environ Res Public Health; 2021 Feb; 18(5):. PubMed ID: 33652560
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of a thermo-tolerant acidophilic alga, Galdieria sulphuraria, for nutrient removal from urban wastewaters.
    Selvaratnam T; Pegallapati AK; Montelya F; Rodriguez G; Nirmalakhandan N; Van Voorhies W; Lammers PJ
    Bioresour Technol; 2014 Mar; 156():395-9. PubMed ID: 24582952
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mixotrophic growth of the extremophile Galdieria sulphuraria reveals the flexibility of its carbon assimilation metabolism.
    Curien G; Lyska D; Guglielmino E; Westhoff P; Janetzko J; Tardif M; Hallopeau C; Brugière S; Dal Bo D; Decelle J; Gallet B; Falconet D; Carone M; Remacle C; Ferro M; Weber APM; Finazzi G
    New Phytol; 2021 Jul; 231(1):326-338. PubMed ID: 33764540
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel paradigm for the high-efficient production of phycocyanin from Galdieria sulphuraria.
    Wan M; Wang Z; Zhang Z; Wang J; Li S; Yu A; Li Y
    Bioresour Technol; 2016 Oct; 218():272-8. PubMed ID: 27372006
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bio-removal of PtCl
    Sun Y; Shi M; Lu T; Ding D; Sun Y; Yuan Y
    Sci Total Environ; 2021 Nov; 796():149021. PubMed ID: 34280622
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cultivation of Acidophilic Algae
    Hirooka S; Miyagishima SY
    Front Microbiol; 2016; 7():2022. PubMed ID: 28066348
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A biorefinery for valorization of industrial waste-water and flue gas by microalgae for waste mitigation, carbon-dioxide sequestration and algal biomass production.
    Yadav G; Dash SK; Sen R
    Sci Total Environ; 2019 Oct; 688():129-135. PubMed ID: 31229810
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Algal biofuels from urban wastewaters: maximizing biomass yield using nutrients recycled from hydrothermal processing of biomass.
    Selvaratnam T; Pegallapati AK; Reddy H; Kanapathipillai N; Nirmalakhandan N; Deng S; Lammers PJ
    Bioresour Technol; 2015 Apr; 182():232-238. PubMed ID: 25704095
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recycling "waste" nutrients back into RAS and FTS marine aquaculture facilities from the perspective of the circular economy.
    Villar-Navarro E; Garrido-Pérez C; Perales JA
    Sci Total Environ; 2021 Mar; 762():143057. PubMed ID: 33162138
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrothermal liquefaction of Galdieria sulphuraria grown on municipal wastewater.
    Cheng F; Mallick K; Henkanatte Gedara SM; Jarvis JM; Schaub T; Jena U; Nirmalakhandan N; Brewer CE
    Bioresour Technol; 2019 Nov; 292():121884. PubMed ID: 31400652
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Growth under Different Trophic Regimes and Synchronization of the Red Microalga
    Náhlík V; Zachleder V; Čížková M; Bišová K; Singh A; Mezricky D; Řezanka T; Vítová M
    Biomolecules; 2021 Jun; 11(7):. PubMed ID: 34202768
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.