BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 37295560)

  • 1. Solid implantable devices for sustained drug delivery.
    Magill E; Demartis S; Gavini E; Permana AD; Thakur RRS; Adrianto MF; Waite D; Glover K; Picco CJ; Korelidou A; Detamornrat U; Vora LK; Li L; Anjani QK; Donnelly RF; Domínguez-Robles J; Larrañeta E
    Adv Drug Deliv Rev; 2023 Aug; 199():114950. PubMed ID: 37295560
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Therapeutic applications of implantable drug delivery systems.
    Dash AK; Cudworth GC
    J Pharmacol Toxicol Methods; 1998 Jul; 40(1):1-12. PubMed ID: 9920528
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolution of implantable and insertable drug delivery systems.
    Kleiner LW; Wright JC; Wang Y
    J Control Release; 2014 May; 181():1-10. PubMed ID: 24548479
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploring the vast potentials and probable limitations of novel and nanostructured implantable drug delivery systems for cancer treatment.
    Ebrahimnia M; Alavi S; Vaezi H; Karamat Iradmousa M; Haeri A
    EXCLI J; 2024; 23():143-179. PubMed ID: 38487087
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rationale and Recent Advances in Targeted Drug Delivery for Cancer Pain: Is It Time to Change the Paradigm?
    Dupoiron D; Duarte R; Carvajal G; Aubrun F; Eldabe S
    Pain Physician; 2022 May; 25(3):E414-E425. PubMed ID: 35652767
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolution of drug-eluting biomedical implants for sustained drug delivery.
    Quarterman JC; Geary SM; Salem AK
    Eur J Pharm Biopharm; 2021 Feb; 159():21-35. PubMed ID: 33338604
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Advanced implantable drug delivery technologies: transforming the clinical landscape of therapeutics for chronic diseases.
    Pons-Faudoa FP; Ballerini A; Sakamoto J; Grattoni A
    Biomed Microdevices; 2019 May; 21(2):47. PubMed ID: 31104136
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effectiveness and Safety of Intrathecal Drug Delivery Systems for the Management of Cancer Pain: A Systematic Review and Meta-Analysis.
    Duarte R; Copley S; Nevitt S; Maden M; Al-Ali AM; Dupoiron D; Eldabe S
    Neuromodulation; 2023 Aug; 26(6):1126-1141. PubMed ID: 35422368
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intrathecal Drug Delivery Systems for Cancer Pain Control: Insights on Current Contemporary Practices in the US.
    Goel V; Kumar V; Blaes A; Gulati A
    Neuromodulation; 2023 Aug; 26(6):1256-1262. PubMed ID: 37318432
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Implantable sustained-release drug delivery systems: a revolution for ocular therapeutics.
    Cong YY; Fan B; Zhang ZY; Li GY
    Int Ophthalmol; 2023 Jul; 43(7):2575-2588. PubMed ID: 36715956
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intrathecal Drug Delivery Systems for Refractory Pancreatic Cancer Pain: Observational Follow-up Study Over an 11-Year Period in a Comprehensive Cancer Center.
    Carvajal G; Dupoiron D; Seegers V; Lebrec N; Boré F; Dubois PY; Leblanc D; Delorme T; Jubier-Hamon S
    Anesth Analg; 2018 Jun; 126(6):2038-2046. PubMed ID: 29543644
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein delivery with infusion pumps.
    Bremer U; Horres CR; Francoeur ML
    Pharm Biotechnol; 1997; 10():239-54. PubMed ID: 9160375
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Implantable drug delivery systems (IDDS) after failure of comprehensive medical management (CMM) can palliate symptoms in the most refractory cancer pain patients.
    Smith TJ; Coyne PJ
    J Palliat Med; 2005 Aug; 8(4):736-42. PubMed ID: 16128647
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An implantable drug delivery system (IDDS) for refractory cancer pain provides sustained pain control, less drug-related toxicity, and possibly better survival compared with comprehensive medical management (CMM).
    Smith TJ; Coyne PJ; Staats PS; Deer T; Stearns LJ; Rauck RL; Boortz-Marx RL; Buchser E; Català E; Bryce DA; Cousins M; Pool GE
    Ann Oncol; 2005 May; 16(5):825-33. PubMed ID: 15817596
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MEMS fabricated chip for an implantable drug delivery device.
    Sbiaa Z
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():5621-4. PubMed ID: 17947154
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Effect of Measured Radiotherapy Dose on Intrathecal Drug Delivery System Function.
    Odell DW; Albrechtsen RD; Sindt JE; Gole R; Brown S; Parsons MW; Paxton AB; Sarkar V; Lloyd S; Brogan SE; Tao R
    Neuromodulation; 2021 Oct; 24(7):1204-1208. PubMed ID: 33624320
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Drug delivery to the posterior segment of the eye.
    Fischer N; Narayanan R; Loewenstein A; Kuppermann BD
    Eur J Ophthalmol; 2011; 21 Suppl 6():S20-6. PubMed ID: 23264325
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A review of implantable intravitreal drug delivery technologies for the treatment of posterior segment eye diseases.
    Choonara YE; Pillay V; Danckwerts MP; Carmichael TR; du Toit LC
    J Pharm Sci; 2010 May; 99(5):2219-39. PubMed ID: 19894268
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Upper Antero-Medial Thigh as an Alternative Site for Implantation of Intrathecal Pumps: A Case Series.
    Narang S; Srinivasan SK; Zinboonyahgoon N; Sampson CE
    Neuromodulation; 2016 Aug; 19(6):655-63. PubMed ID: 27388670
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Potential new drug delivery systems for antidepressants: an overview.
    Kilts CD
    J Clin Psychiatry; 2003; 64 Suppl 18():31-3. PubMed ID: 14700453
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.