BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 37295750)

  • 1. Classification of autism based on short-term spontaneous hemodynamic fluctuations using an adaptive graph neural network.
    Zhu Y; Xu L; Yu J
    J Neurosci Methods; 2023 Jul; 394():109901. PubMed ID: 37295750
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of autism spectrum disorder based on short-term spontaneous hemodynamic fluctuations using deep learning in a multi-layer neural network.
    Xu L; Sun Z; Xie J; Yu J; Li J; Wang J
    Clin Neurophysiol; 2021 Feb; 132(2):457-468. PubMed ID: 33450566
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of autism spectrum disorder based on functional near-infrared spectroscopy using adaptive spatiotemporal graph convolution network.
    Zhang H; Xu L; Yu J; Li J; Wang J
    Front Neurosci; 2023; 17():1132231. PubMed ID: 36968494
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using dynamic spatio-temporal graph pooling network for identifying autism spectrum disorders in spontaneous functional infrared spectral sequence signals.
    Wu T; Yin X; Xu L; Yu J
    J Neurosci Methods; 2024 May; ():110157. PubMed ID: 38705284
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction in Autism by Deep Learning Short-Time Spontaneous Hemodynamic Fluctuations.
    Xu L; Geng X; He X; Li J; Yu J
    Front Neurosci; 2019; 13():1120. PubMed ID: 31780879
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Classification of autism spectrum disorder based on sample entropy of spontaneous functional near infra-red spectroscopy signal.
    Xu L; Hua Q; Yu J; Li J
    Clin Neurophysiol; 2020 Jun; 131(6):1365-1374. PubMed ID: 32311592
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterizing autism spectrum disorder by deep learning spontaneous brain activity from functional near-infrared spectroscopy.
    Xu L; Liu Y; Yu J; Li X; Yu X; Cheng H; Li J
    J Neurosci Methods; 2020 Feb; 331():108538. PubMed ID: 31794776
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A heterogeneous graph convolutional attention network method for classification of autism spectrum disorder.
    Shao L; Fu C; Chen X
    BMC Bioinformatics; 2023 Sep; 24(1):363. PubMed ID: 37759189
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Overconnectivity of the right Heschl's and inferior temporal gyrus correlates with symptom severity in preschoolers with autism spectrum disorder.
    Kim D; Lee JY; Jeong BC; Ahn JH; Kim JI; Lee ES; Kim H; Lee HJ; Han CE
    Autism Res; 2021 Nov; 14(11):2314-2329. PubMed ID: 34529363
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identifying autism spectrum disorder in resting-state fNIRS signals based on multiscale entropy and a two-branch deep learning network.
    Li C; Zhang T; Li J
    J Neurosci Methods; 2023 Jan; 383():109732. PubMed ID: 36349567
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Abnormal gray matter volume and functional connectivity patterns in social cognition-related brain regions of young children with autism spectrum disorder.
    Bai C; Wang Y; Zhang Y; Wang X; Chen Z; Yu W; Zhang H; Li X; Zhu K; Wang Y; Zhang T
    Autism Res; 2023 Jun; 16(6):1124-1137. PubMed ID: 37163546
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Developmental differences in neural connectivity for semantic processing in youths with autism.
    Fan LY; Booth JR; Liu M; Chou TL; Gau SS
    J Child Psychol Psychiatry; 2021 Sep; 62(9):1090-1099. PubMed ID: 33543509
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neural signature of developmental coordination disorder in the structural connectome independent of comorbid autism.
    Caeyenberghs K; Taymans T; Wilson PH; Vanderstraeten G; Hosseini H; van Waelvelde H
    Dev Sci; 2016 Jul; 19(4):599-612. PubMed ID: 27147441
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multimodal neuroimaging based classification of autism spectrum disorder using anatomical, neurochemical, and white matter correlates.
    Libero LE; DeRamus TP; Lahti AC; Deshpande G; Kana RK
    Cortex; 2015 May; 66():46-59. PubMed ID: 25797658
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differences in cortical activation patterns during action observation, action execution, and interpersonal synchrony between children with or without autism spectrum disorder (ASD): An fNIRS pilot study.
    Su WC; Culotta M; Mueller J; Tsuzuki D; Pelphrey K; Bhat A
    PLoS One; 2020; 15(10):e0240301. PubMed ID: 33119704
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Brain functional activity-based classification of autism spectrum disorder using an attention-based graph neural network combined with gene expression.
    Wang Z; Xu Y; Peng D; Gao J; Lu F
    Cereb Cortex; 2023 May; 33(10):6407-6419. PubMed ID: 36587290
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aberrant functional connectivity of inhibitory control networks in children with autism spectrum disorder.
    Voorhies W; Dajani DR; Vij SG; Shankar S; Turan TO; Uddin LQ
    Autism Res; 2018 Nov; 11(11):1468-1478. PubMed ID: 30270514
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A robust DWT-CNN-based CAD system for early diagnosis of autism using task-based fMRI.
    Haweel R; Shalaby A; Mahmoud A; Seada N; Ghoniemy S; Ghazal M; Casanova MF; Barnes GN; El-Baz A
    Med Phys; 2021 May; 48(5):2315-2326. PubMed ID: 33378589
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Altered perspective-dependent brain activation while viewing hands and associated imitation difficulties in individuals with autism spectrum disorder.
    Okamoto Y; Kitada R; Miyahara M; Kochiyama T; Naruse H; Sadato N; Okazawa H; Kosaka H
    Neuroimage Clin; 2018; 19():384-395. PubMed ID: 30035023
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Frontoparietal Network in Executive Functioning in Autism Spectrum Disorder.
    May KE; Kana RK
    Autism Res; 2020 Oct; 13(10):1762-1777. PubMed ID: 33016005
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.