These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 37295786)

  • 1. Postactivation Potentiation and the Asynchronous Action of Muscular and Neural Responses.
    Xenofondos A; Papavasileiou A; Bassa E; Vrabas IS; Patikas DA
    Int J Sports Physiol Perform; 2023 Aug; 18(8):852-860. PubMed ID: 37295786
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Muscle Twitch Torque During Two Different in Volume Isometric Exercise Protocols: Fatigue Effects on Postactivation Potentiation.
    Xenofondos A; Bassa E; Vrabas IS; Kotzamanidis C; Patikas DA
    J Strength Cond Res; 2018 Feb; 32(2):578-586. PubMed ID: 29084091
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Muscular and Neural Contributions to Postactivation Potentiation.
    Wallace BJ; Shapiro R; Wallace KL; Abel MG; Symons TB
    J Strength Cond Res; 2019 Mar; 33(3):615-625. PubMed ID: 30589723
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plyometric exercise enhances twitch contractile properties but fails to improve voluntary rate of torque development in highly trained sprint athletes.
    Zimmermann HB; Costa FE; Sakugawa R; MacIntosh B; Diefenthaeler F; Dal Pupo J
    Eur J Sport Sci; 2022 Jun; 22(6):857-866. PubMed ID: 33840359
    [No Abstract]   [Full Text] [Related]  

  • 5. Effect of postactivation potentiation on the maximal voluntary isokinetic concentric torque in humans.
    Miyamoto N; Kanehisa H; Fukunaga T; Kawakami Y
    J Strength Cond Res; 2011 Jan; 25(1):186-92. PubMed ID: 20093966
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Limiting mechanisms of force production after repetitive dynamic contractions in human triceps surae.
    Klass M; Guissard N; Duchateau J
    J Appl Physiol (1985); 2004 Apr; 96(4):1516-21; discussion. PubMed ID: 14607852
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Postactivation potentiation in a human muscle: effect on the rate of torque development of tetanic and voluntary isometric contractions.
    Baudry S; Duchateau J
    J Appl Physiol (1985); 2007 Apr; 102(4):1394-401. PubMed ID: 17204572
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Frequency-dependent coexistence of muscle fatigue and potentiation assessed by concentric isotonic contractions in human plantar flexors.
    Zero AM; Paris MT; Rice CL
    J Appl Physiol (1985); 2022 Aug; 133(2):490-505. PubMed ID: 35796610
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neuromechanical properties of the triceps surae in young and older adults.
    Barber LA; Barrett RS; Gillett JG; Cresswell AG; Lichtwark GA
    Exp Gerontol; 2013 Nov; 48(11):1147-55. PubMed ID: 23886750
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Age-related fatigability of the ankle dorsiflexor muscles during concentric and eccentric contractions.
    Baudry S; Klass M; Pasquet B; Duchateau J
    Eur J Appl Physiol; 2007 Jul; 100(5):515-25. PubMed ID: 16718508
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Time course of postactivation potentiation during intermittent submaximal fatiguing contractions in endurance- and power-trained athletes.
    Morana C; Perrey S
    J Strength Cond Res; 2009 Aug; 23(5):1456-64. PubMed ID: 19620919
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Postactivation potentiation of force is independent of h-reflex excitability.
    Hodgson MJ; Docherty D; Zehr EP
    Int J Sports Physiol Perform; 2008 Jun; 3(2):219-31. PubMed ID: 19208930
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Passive muscle length changes affect twitch potentiation in power athletes.
    Gago P; Marques MC; Marinho DA; Ekblom MM
    Med Sci Sports Exerc; 2014 Jul; 46(7):1334-42. PubMed ID: 24389516
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reduced corticospinal responses in older compared with younger adults during submaximal isometric, shortening, and lengthening contractions.
    Škarabot J; Ansdell P; Brownstein CG; Hicks KM; Howatson G; Goodall S; Durbaba R
    J Appl Physiol (1985); 2019 Apr; 126(4):1015-1031. PubMed ID: 30730812
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Voluntary rate of torque development is impaired after a voluntary versus tetanic conditioning contraction.
    Smith CB; Allen MD; Rice CL
    Muscle Nerve; 2014 Feb; 49(2):218-24. PubMed ID: 23625611
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Central and peripheral contributions to fatigue in relation to level of activation during repeated maximal voluntary isometric plantar flexions.
    Nordlund MM; Thorstensson A; Cresswell AG
    J Appl Physiol (1985); 2004 Jan; 96(1):218-25. PubMed ID: 12972439
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Postactivation potentiation in human muscle is not related to the type of maximal conditioning contraction.
    Baudry S; Duchateau J
    Muscle Nerve; 2004 Sep; 30(3):328-36. PubMed ID: 15318344
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of the intensity of a conditioning contraction on the subsequent twitch torque and maximal voluntary concentric torque.
    Fukutani A; Miyamoto N; Kanehisa H; Yanai T; Kawakami Y
    J Electromyogr Kinesiol; 2012 Aug; 22(4):560-5. PubMed ID: 22513368
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Postactivation potentiation in a human muscle: effect on the load-velocity relation of tetanic and voluntary shortening contractions.
    Baudry S; Duchateau J
    J Appl Physiol (1985); 2007 Oct; 103(4):1318-25. PubMed ID: 17641222
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Post-activation potentiation induced by concentric contractions at three speeds in humans.
    Zero AM; Rice CL
    Exp Physiol; 2021 Dec; 106(12):2489-2501. PubMed ID: 34569107
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.