These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 37295997)

  • 1. Current sharing and voltage regulation of parallel DC-DC buck converters: Switching control approach.
    Sinafar B; Badamchizadeh MA; Kharrati H; Baradarannia M
    ISA Trans; 2023 Sep; 140():490-502. PubMed ID: 37295997
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-Efficiency Flicker-Free LED Driver with Soft-Switching Feature.
    Cheng HL; Hwang LC; Chang HH; Wang QY; Cheng CA
    Micromachines (Basel); 2022 May; 13(5):. PubMed ID: 35630264
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DC Voltage Sensorless Predictive Control of a High-Efficiency PFC Single-Phase Rectifier Based on the Versatile Buck-Boost Converter.
    González-Castaño C; Restrepo C; Sanz F; Chub A; Giral R
    Sensors (Basel); 2021 Jul; 21(15):. PubMed ID: 34372341
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Global fast terminal sliding mode control with fixed switching frequency for voltage control of DC-DC buck converters.
    Balta G; Güler N; Altin N
    ISA Trans; 2023 Dec; 143():582-595. PubMed ID: 37758526
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new positive output DC-DC buck-boost converter based on modified boost and ZETA converters.
    Hosseinpour M; Heydarvand M; Azizkandi ME
    Sci Rep; 2024 Sep; 14(1):20675. PubMed ID: 39237808
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sensorless Adaptive Voltage Control for Classical DC-DC Converters Feeding Unknown Loads: A Generalized PI Passivity-Based Approach.
    Gil-González W; Montoya OD; Restrepo C; Hernández JC
    Sensors (Basel); 2021 Sep; 21(19):. PubMed ID: 34640687
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bidirectional Six-Pack SiC Boost-Buck Converter Using Droop Control in DC Nano-Grid.
    Kim Y; Choi S
    Sensors (Basel); 2023 Oct; 23(21):. PubMed ID: 37960474
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Performance Evaluation of the Two-Input Buck Converter as a Visible Light Communication High-Brightness LED Driver Based on Split Power.
    Aller DG; Lamar DG; García-Mere JR; Arias M; Rodriguez J; Sebastian J
    Sensors (Basel); 2024 Oct; 24(19):. PubMed ID: 39409432
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adaptive terminal sliding-mode control strategy for DC-DC buck converters.
    Komurcugil H
    ISA Trans; 2012 Nov; 51(6):673-81. PubMed ID: 22877744
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic Sensorless Control Approach for Markovian Switching Systems Applied to PWM DC-DC Converters with Time-Delay and Partial Input Saturation.
    Zahaf A; Bououden S; Chadli M; Boulkaibet I; Neji B; Khezami N
    Sensors (Basel); 2023 Aug; 23(15):. PubMed ID: 37571719
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sigmoid function model of parallel-connected DC-DC converters and analysis of their dynamic characteristics.
    Gu J; Lu Y; Huang X; Yin Z
    Chaos; 2024 Jul; 34(7):. PubMed ID: 38980383
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Composite DC-DC Converter Based on the Versatile Buck-Boost Topology for Electric Vehicle Applications.
    González-Castaño C; Restrepo C; Flores-Bahamonde F; Rodriguez J
    Sensors (Basel); 2022 Jul; 22(14):. PubMed ID: 35891089
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An optimal current observer for predictive current controlled buck DC-DC converters.
    Min R; Chen C; Zhang X; Zou X; Tong Q; Zhang Q
    Sensors (Basel); 2014 May; 14(5):8851-68. PubMed ID: 24854061
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An optimal control strategy for DC bus voltage regulation in photovoltaic system with battery energy storage.
    Daud MZ; Mohamed A; Hannan MA
    ScientificWorldJournal; 2014; 2014():271087. PubMed ID: 24883374
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sliding mode controller with modified sliding function for DC-DC Buck Converter.
    Naik BB; Mehta AJ
    ISA Trans; 2017 Sep; 70():279-287. PubMed ID: 28577974
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single-Switching Reachable Operation Points in a DC-DC Buck Converter: An Approximation from Time Optimal Control.
    Dikariev I; Angulo F; Angulo-Garcia D
    Micromachines (Basel); 2020 Aug; 11(9):. PubMed ID: 32878222
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An Adaptive-Predictive control scheme with dynamic Hysteresis Modulation applied to a DC-DC buck converter.
    de León Puig NIP; Bozalakov D; Acho L; Vandevelde L; Rodellar J
    ISA Trans; 2020 Oct; 105():240-255. PubMed ID: 32446497
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A robust nonlinear PI-type controller for the DC-DC buck-boost power converter.
    Martinez-Lopez M; Moreno-Valenzuela J; He W
    ISA Trans; 2022 Oct; 129(Pt A):687-700. PubMed ID: 35131094
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimal control strategies for high-efficiency non-isolated DC-DC buck converters in IoT applications: A comparative study.
    Kumaraguruparan S; Elango K
    Heliyon; 2024 Sep; 10(18):e38119. PubMed ID: 39381210
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multi-objective cooperative controller design for rapid state-of-charge balancing and flexible bus voltage regulation in shipboard DC microgrids.
    Liu Y; Zeng Y; Zhang Q; You S; Guo H; Hu Y; Zhang F
    ISA Trans; 2024 Mar; 146():421-436. PubMed ID: 38220543
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.