These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 37296006)
1. Bounding box-based 3D AI model for user-guided volumetric segmentation of pancreatic ductal adenocarcinoma on standard-of-care CTs. Mukherjee S; Korfiatis P; Khasawneh H; Rajamohan N; Patra A; Suman G; Singh A; Thakkar J; Patnam NG; Trivedi KH; Karbhari A; Chari ST; Truty MJ; Halfdanarson TR; Bolan CW; Sandrasegaran K; Majumder S; Goenka AH Pancreatology; 2023 Aug; 23(5):522-529. PubMed ID: 37296006 [TBL] [Abstract][Full Text] [Related]
2. Two-stage deep learning model for fully automated pancreas segmentation on computed tomography: Comparison with intra-reader and inter-reader reliability at full and reduced radiation dose on an external dataset. Panda A; Korfiatis P; Suman G; Garg SK; Polley EC; Singh DP; Chari ST; Goenka AH Med Phys; 2021 May; 48(5):2468-2481. PubMed ID: 33595105 [TBL] [Abstract][Full Text] [Related]
3. Automated Artificial Intelligence Model Trained on a Large Data Set Can Detect Pancreas Cancer on Diagnostic Computed Tomography Scans As Well As Visually Occult Preinvasive Cancer on Prediagnostic Computed Tomography Scans. Korfiatis P; Suman G; Patnam NG; Trivedi KH; Karbhari A; Mukherjee S; Cook C; Klug JR; Patra A; Khasawneh H; Rajamohan N; Fletcher JG; Truty MJ; Majumder S; Bolan CW; Sandrasegaran K; Chari ST; Goenka AH Gastroenterology; 2023 Dec; 165(6):1533-1546.e4. PubMed ID: 37657758 [TBL] [Abstract][Full Text] [Related]
5. Volumetric Pancreas Segmentation on Computed Tomography: Accuracy and Efficiency of a Convolutional Neural Network Versus Manual Segmentation in 3D Slicer in the Context of Interreader Variability of Expert Radiologists. Khasawneh H; Patra A; Rajamohan N; Suman G; Klug J; Majumder S; Chari ST; Korfiatis P; Goenka AH J Comput Assist Tomogr; 2022 Nov-Dec 01; 46(6):841-847. PubMed ID: 36055122 [TBL] [Abstract][Full Text] [Related]
6. Development of a volumetric pancreas segmentation CT dataset for AI applications through trained technologists: a study during the COVID 19 containment phase. Suman G; Panda A; Korfiatis P; Edwards ME; Garg S; Blezek DJ; Chari ST; Goenka AH Abdom Radiol (NY); 2020 Dec; 45(12):4302-4310. PubMed ID: 32939632 [TBL] [Abstract][Full Text] [Related]
7. nnU-Net-Based Pancreas Segmentation and Volume Measurement on CT Imaging in Patients with Pancreatic Cancer. Yang E; Kim JH; Min JH; Jeong WK; Hwang JA; Lee JH; Shin J; Kim H; Lee SE; Baek SY Acad Radiol; 2024 Jul; 31(7):2784-2794. PubMed ID: 38350812 [TBL] [Abstract][Full Text] [Related]
8. Semiautomated segmentation of hepatocellular carcinoma tumors with MRI using convolutional neural networks. Said D; Carbonell G; Stocker D; Hectors S; Vietti-Violi N; Bane O; Chin X; Schwartz M; Tabrizian P; Lewis S; Greenspan H; Jégou S; Schiratti JB; Jehanno P; Taouli B Eur Radiol; 2023 Sep; 33(9):6020-6032. PubMed ID: 37071167 [TBL] [Abstract][Full Text] [Related]
9. Segmentation of pancreatic ductal adenocarcinoma (PDAC) and surrounding vessels in CT images using deep convolutional neural networks and texture descriptors. Mahmoudi T; Kouzahkanan ZM; Radmard AR; Kafieh R; Salehnia A; Davarpanah AH; Arabalibeik H; Ahmadian A Sci Rep; 2022 Feb; 12(1):3092. PubMed ID: 35197542 [TBL] [Abstract][Full Text] [Related]
10. Assessing the robustness of a machine-learning model for early detection of pancreatic adenocarcinoma (PDA): evaluating resilience to variations in image acquisition and radiomics workflow using image perturbation methods. Mukherjee S; Korfiatis P; Patnam NG; Trivedi KH; Karbhari A; Suman G; Fletcher JG; Goenka AH Abdom Radiol (NY); 2024 Mar; 49(3):964-974. PubMed ID: 38175255 [TBL] [Abstract][Full Text] [Related]
11. Deep neural network-based segmentation of normal and abnormal pancreas on abdominal CT: evaluation of global and local accuracies. Kawamoto S; Zhu Z; Chu LC; Javed AA; Kinny-Köster B; Wolfgang CL; Hruban RH; Kinzler KW; Fouladi DF; Blanco A; Shayesteh S; Fishman EK Abdom Radiol (NY); 2024 Feb; 49(2):501-511. PubMed ID: 38102442 [TBL] [Abstract][Full Text] [Related]
12. Radiomics-based Machine-learning Models Can Detect Pancreatic Cancer on Prediagnostic Computed Tomography Scans at a Substantial Lead Time Before Clinical Diagnosis. Mukherjee S; Patra A; Khasawneh H; Korfiatis P; Rajamohan N; Suman G; Majumder S; Panda A; Johnson MP; Larson NB; Wright DE; Kline TL; Fletcher JG; Chari ST; Goenka AH Gastroenterology; 2022 Nov; 163(5):1435-1446.e3. PubMed ID: 35788343 [TBL] [Abstract][Full Text] [Related]
13. Fully end-to-end deep-learning-based diagnosis of pancreatic tumors. Si K; Xue Y; Yu X; Zhu X; Li Q; Gong W; Liang T; Duan S Theranostics; 2021; 11(4):1982-1990. PubMed ID: 33408793 [TBL] [Abstract][Full Text] [Related]
14. Artificial intelligence for assessment of vascular involvement and tumor resectability on CT in patients with pancreatic cancer. Bereska JI; Janssen BV; Nio CY; Kop MPM; Kazemier G; Busch OR; Struik F; Marquering HA; Stoker J; Besselink MG; Verpalen IM; Eur Radiol Exp; 2024 Feb; 8(1):18. PubMed ID: 38342782 [TBL] [Abstract][Full Text] [Related]
15. Visual ensemble selection of deep convolutional neural networks for 3D segmentation of breast tumors on dynamic contrast enhanced MRI. Rahimpour M; Saint Martin MJ; Frouin F; Akl P; Orlhac F; Koole M; Malhaire C Eur Radiol; 2023 Feb; 33(2):959-969. PubMed ID: 36074262 [TBL] [Abstract][Full Text] [Related]
16. Whole liver segmentation based on deep learning and manual adjustment for clinical use in SIRT. Tang X; Jafargholi Rangraz E; Coudyzer W; Bertels J; Robben D; Schramm G; Deckers W; Maleux G; Baete K; Verslype C; Gooding MJ; Deroose CM; Nuyts J Eur J Nucl Med Mol Imaging; 2020 Nov; 47(12):2742-2752. PubMed ID: 32314026 [TBL] [Abstract][Full Text] [Related]
17. Artificial intelligence-based tools with automated segmentation and measurement on CT images to assist accurate and fast diagnosis in acute pancreatitis. Pan X; Jiao K; Li X; Feng L; Tian Y; Wu L; Zhang P; Wang K; Chen S; Yang B; Chen W Br J Radiol; 2024 Jun; 97(1159):1268-1277. PubMed ID: 38730541 [TBL] [Abstract][Full Text] [Related]
18. Automated glioma grading on conventional MRI images using deep convolutional neural networks. Zhuge Y; Ning H; Mathen P; Cheng JY; Krauze AV; Camphausen K; Miller RW Med Phys; 2020 Jul; 47(7):3044-3053. PubMed ID: 32277478 [TBL] [Abstract][Full Text] [Related]
19. Fully automatic multi-organ segmentation for head and neck cancer radiotherapy using shape representation model constrained fully convolutional neural networks. Tong N; Gou S; Yang S; Ruan D; Sheng K Med Phys; 2018 Oct; 45(10):4558-4567. PubMed ID: 30136285 [TBL] [Abstract][Full Text] [Related]