These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
205 related articles for article (PubMed ID: 37296137)
21. Dynamic mechanisms of CRISPR interference by Escherichia coli CRISPR-Cas3. Yoshimi K; Takeshita K; Kodera N; Shibumura S; Yamauchi Y; Omatsu M; Umeda K; Kunihiro Y; Yamamoto M; Mashimo T Nat Commun; 2022 Aug; 13(1):4917. PubMed ID: 36042215 [TBL] [Abstract][Full Text] [Related]
22. Double nicking by RNA-directed Cascade-nCas3 for high-efficiency large-scale genome engineering. Hao Y; Wang Q; Li J; Yang S; Zheng Y; Peng W Open Biol; 2022 Jan; 12(1):210241. PubMed ID: 35016549 [TBL] [Abstract][Full Text] [Related]
23. A highly efficient single-step, markerless strategy for multi-copy chromosomal integration of large biochemical pathways in Saccharomyces cerevisiae. Shi S; Liang Y; Zhang MM; Ang EL; Zhao H Metab Eng; 2016 Jan; 33():19-27. PubMed ID: 26546089 [TBL] [Abstract][Full Text] [Related]
24. Repurposing the atypical type I-G CRISPR system for bacterial genome engineering. Shangguan Q; White MF Microbiology (Reading); 2023 Aug; 169(8):. PubMed ID: 37526970 [TBL] [Abstract][Full Text] [Related]
25. A Single Cas9-VPR Nuclease for Simultaneous Gene Activation, Repression, and Editing in Dong C; Jiang L; Xu S; Huang L; Cai J; Lian J; Xu Z ACS Synth Biol; 2020 Sep; 9(9):2252-2257. PubMed ID: 32841560 [TBL] [Abstract][Full Text] [Related]
26. Characteristic and inheritance analysis of targeted mutagenesis mediated by genome editing in rice. Tang L; Li YK; Zhang D; Mao BG; Lv QM; Hu YY; Shao Y; Peng Y; Zhao BR; Xia ST Yi Chuan; 2016 Aug; 38(8):746-55. PubMed ID: 27531613 [TBL] [Abstract][Full Text] [Related]
27. [CRISPR/Cas-mediated DNA base editing technology and its application in biomedicine and agriculture]. Yu C; Mo J; Zhao X; Li G; Zhang X Sheng Wu Gong Cheng Xue Bao; 2021 Sep; 37(9):3071-3087. PubMed ID: 34622618 [TBL] [Abstract][Full Text] [Related]
28. Efficient CRISPR/Cas9 genome editing with low off-target effects in zebrafish. Hruscha A; Krawitz P; Rechenberg A; Heinrich V; Hecht J; Haass C; Schmid B Development; 2013 Dec; 140(24):4982-7. PubMed ID: 24257628 [TBL] [Abstract][Full Text] [Related]
29. In vivo CRISPR editing with no detectable genome-wide off-target mutations. Akcakaya P; Bobbin ML; Guo JA; Malagon-Lopez J; Clement K; Garcia SP; Fellows MD; Porritt MJ; Firth MA; Carreras A; Baccega T; Seeliger F; Bjursell M; Tsai SQ; Nguyen NT; Nitsch R; Mayr LM; Pinello L; Bohlooly-Y M; Aryee MJ; Maresca M; Joung JK Nature; 2018 Sep; 561(7723):416-419. PubMed ID: 30209390 [TBL] [Abstract][Full Text] [Related]
30. High-copy genome integration of 2,3-butanediol biosynthesis pathway in Saccharomyces cerevisiae via in vivo DNA assembly and replicative CRISPR-Cas9 mediated delta integration. Huang S; Geng A J Biotechnol; 2020 Feb; 310():13-20. PubMed ID: 32006629 [TBL] [Abstract][Full Text] [Related]
31. Genetic Manipulation of MRSA Using CRISPR/Cas9 Technology. Chen W; Ji Q Methods Mol Biol; 2020; 2069():113-124. PubMed ID: 31523770 [TBL] [Abstract][Full Text] [Related]
32. [Progress in gene editing technologies for Saccharomyces cerevisiae]. Li H; Liang X; Zhou J Sheng Wu Gong Cheng Xue Bao; 2021 Mar; 37(3):950-965. PubMed ID: 33783160 [TBL] [Abstract][Full Text] [Related]
33. CRISPR/Cas genome editing to optimize pharmacologically active plant natural products. Dey A Pharmacol Res; 2021 Feb; 164():105359. PubMed ID: 33285226 [TBL] [Abstract][Full Text] [Related]
35. Highly efficient single base editing in Aspergillus niger with CRISPR/Cas9 cytidine deaminase fusion. Huang L; Dong H; Zheng J; Wang B; Pan L Microbiol Res; 2019; 223-225():44-50. PubMed ID: 31178050 [TBL] [Abstract][Full Text] [Related]
36. Multiplex Gene Disruption by Targeted Base Editing of Yarrowia lipolytica Genome Using Cytidine Deaminase Combined with the CRISPR/Cas9 System. Bae SJ; Park BG; Kim BG; Hahn JS Biotechnol J; 2020 Jan; 15(1):e1900238. PubMed ID: 31657874 [TBL] [Abstract][Full Text] [Related]
37. CRISPR/Cas9-mediated efficient genome editing via protoplast-based transformation in yeast-like fungus Aureobasidium pullulans. Zhang Y; Feng J; Wang P; Xia J; Li X; Zou X Gene; 2019 Aug; 709():8-16. PubMed ID: 31132514 [TBL] [Abstract][Full Text] [Related]
38. Repurposing type I-F CRISPR-Cas system as a transcriptional activation tool in human cells. Chen Y; Liu J; Zhi S; Zheng Q; Ma W; Huang J; Liu Y; Liu D; Liang P; Songyang Z Nat Commun; 2020 Jun; 11(1):3136. PubMed ID: 32561716 [TBL] [Abstract][Full Text] [Related]
39. CRISPER/Cas in Plant Natural Product Research: Therapeutics as Anticancer and other Drug Candidates and Recent Patents. Dey A; Nandy S Recent Pat Anticancer Drug Discov; 2021; 16(4):460-468. PubMed ID: 34911411 [TBL] [Abstract][Full Text] [Related]
40. ACtivE: Assembly and CRISPR-Targeted Malcı K; Jonguitud-Borrego N; van der Straten Waillet H; Puodžiu Naitė U; Johnston EJ; Rosser SJ; Rios-Solis L ACS Synth Biol; 2022 Nov; 11(11):3629-3643. PubMed ID: 36252276 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]