These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 37296704)

  • 1. An Automated Method of 3D Facial Soft Tissue Landmark Prediction Based on Object Detection and Deep Learning.
    Zhang Y; Xu Y; Zhao J; Du T; Li D; Zhao X; Wang J; Li C; Tu J; Qi K
    Diagnostics (Basel); 2023 May; 13(11):. PubMed ID: 37296704
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Preliminary study on the method of automatically determining facial landmarks based on three-dimensional face template].
    Wen AN; Zhu YJ; Zheng SW; Xiao N; Gao ZX; Fu XL; Wang Y; Zhao Y
    Zhonghua Kou Qiang Yi Xue Za Zhi; 2022 Apr; 57(4):358-365. PubMed ID: 35368162
    [No Abstract]   [Full Text] [Related]  

  • 3. [Deep learning-assisted construction of three-demensional facial midsagittal plane].
    Zhu YJ; Xu Q; Zhao YJ; Zhang L; Fu ZW; Wen AN; Gao ZX; Zhang J; Fu XL; Wang Y
    Beijing Da Xue Xue Bao Yi Xue Ban; 2022 Feb; 54(1):134-139. PubMed ID: 35165480
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detecting Facial Region and Landmarks at Once via Deep Network.
    Kim T; Mok J; Lee E
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34450804
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Implementing a superimposition and measurement model for 3D sagittal analysis of therapy-induced changes in facial soft tissue: a pilot study.
    Hoefert CS; Bacher M; Herberts T; Krimmel M; Reinert S; Hoefert S; Göz G
    J Orofac Orthop; 2010 May; 71(3):221-34. PubMed ID: 20503004
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison Study of Extraction Accuracy of 3D Facial Anatomical Landmarks Based on Non-Rigid Registration of Face Template.
    Wen A; Zhu Y; Xiao N; Gao Z; Zhang Y; Wang Y; Wang S; Zhao Y
    Diagnostics (Basel); 2023 Mar; 13(6):. PubMed ID: 36980394
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automatic landmark detection and mapping for 2D/3D registration with BoneNet.
    Nguyen V; Alves Pereira LF; Liang Z; Mielke F; Van Houtte J; Sijbers J; De Beenhouwer J
    Front Vet Sci; 2022; 9():923449. PubMed ID: 36061115
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep Learning-Based Prediction of the 3D Postorthodontic Facial Changes.
    Park YS; Choi JH; Kim Y; Choi SH; Lee JH; Kim KH; Chung CJ
    J Dent Res; 2022 Oct; 101(11):1372-1379. PubMed ID: 35774018
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accuracy of an automated method of 3D soft tissue landmark detection.
    Baksi S; Freezer S; Matsumoto T; Dreyer C
    Eur J Orthod; 2021 Dec; 43(6):622-630. PubMed ID: 33377968
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D facial landmark detection under large yaw and expression variations.
    Perakis P; Passalis G; Theoharis T; Kakadiaris IA
    IEEE Trans Pattern Anal Mach Intell; 2013 Jul; 35(7):1552-64. PubMed ID: 23681986
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D Facial Landmark Localization for cephalometric analysis.
    Torres HR; Morais P; Fritze A; Oliveira B; Veloso F; Rudiger M; Fonseca JC; Vilaca JL
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():1016-1019. PubMed ID: 36083940
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reproducibility of facial soft tissue landmarks on facial images captured on a 3D camera.
    Othman SA; Ahmad R; Mericant AF; Jamaludin M
    Aust Orthod J; 2013 May; 29(1):58-65. PubMed ID: 23785939
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A semi-supervised learning approach for automated 3D cephalometric landmark identification using computed tomography.
    Yun HS; Hyun CM; Baek SH; Lee SH; Seo JK
    PLoS One; 2022; 17(9):e0275114. PubMed ID: 36170279
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fully Automatic Landmarking of Syndromic 3D Facial Surface Scans Using 2D Images.
    Bannister JJ; Crites SR; Aponte JD; Katz DC; Wilms M; Klein OD; Bernier FPJ; Spritz RA; Hallgrímsson B; Forkert ND
    Sensors (Basel); 2020 Jun; 20(11):. PubMed ID: 32503190
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Attention-aware 3D U-Net convolutional neural network for knowledge-based planning 3D dose distribution prediction of head-and-neck cancer.
    Osman AFI; Tamam NM
    J Appl Clin Med Phys; 2022 Jul; 23(7):e13630. PubMed ID: 35533234
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A knowledge-based algorithm for automatic detection of cephalometric landmarks on CBCT images.
    Gupta A; Kharbanda OP; Sardana V; Balachandran R; Sardana HK
    Int J Comput Assist Radiol Surg; 2015 Nov; 10(11):1737-52. PubMed ID: 25847662
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Landmark-based homologous multi-point warping approach to 3D facial recognition using multiple datasets.
    Agbolade O; Nazri A; Yaakob R; Ghani AAA; Cheah YK
    PeerJ Comput Sci; 2020; 6():e249. PubMed ID: 33816901
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Age verification using random forests on facial 3D landmarks.
    Jandová M; Daňko M; Urbanová P
    Forensic Sci Int; 2021 Jan; 318():110612. PubMed ID: 33285472
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep learning based automated quantification of urethral plate characteristics using the plate objective scoring tool (POST).
    Abbas TO; AbdelMoniem M; Khalil IA; Abrar Hossain MS; Chowdhury MEH
    J Pediatr Urol; 2023 Aug; 19(4):373.e1-373.e9. PubMed ID: 37085408
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reproducibility of facial soft tissue landmarks on 3D laser-scanned facial images.
    Toma AM; Zhurov A; Playle R; Ong E; Richmond S
    Orthod Craniofac Res; 2009 Feb; 12(1):33-42. PubMed ID: 19154273
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.