These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
191 related articles for article (PubMed ID: 37297077)
1. Experimental and Numerical Investigation of Flow Structure and Heat Transfer Behavior of Multiple Jet Impingement Using MgO-Water Nanofluids. Tang TL; Salleh H; Sadiq MI; Mohd Sabri MA; Ahmad MIM; Ghopa WAW Materials (Basel); 2023 May; 16(11):. PubMed ID: 37297077 [TBL] [Abstract][Full Text] [Related]
2. A Review on Experimental and Numerical Investigations of Jet Impingement Cooling Performance with Nanofluids. Wai OJ; Gunnasegaran P; Hasini H Micromachines (Basel); 2022 Nov; 13(12):. PubMed ID: 36557358 [TBL] [Abstract][Full Text] [Related]
3. Effect of Hybrid Nanofluids Concentration and Swirling Flow on Jet Impingement Cooling. Jen Wai O; Gunnasegaran P; Hasini H Nanomaterials (Basel); 2022 Sep; 12(19):. PubMed ID: 36234386 [TBL] [Abstract][Full Text] [Related]
4. Nanofluid impingement jet heat transfer. Zeitoun O; Ali M Nanoscale Res Lett; 2012 Feb; 7(1):139. PubMed ID: 22340669 [TBL] [Abstract][Full Text] [Related]
5. Thermal-hydraulic performance and flow phenomenon evaluation of a curved trapezoidal corrugated channel with E-shaped baffles implementing hybrid nanofluid. Ahamed R; Salehin M; Ehsan MM Heliyon; 2024 Apr; 10(7):e28698. PubMed ID: 38617919 [TBL] [Abstract][Full Text] [Related]
6. Numerical study of the enhancement of heat transfer for hybrid CuO-Cu Nanofluids flowing in a circular pipe. Balla HH; Abdullah S; Mohdfaizal W; Zulkifli R; Sopian K J Oleo Sci; 2013; 62(7):533-9. PubMed ID: 23823920 [TBL] [Abstract][Full Text] [Related]
7. Impact of the TiO₂ Nanosolution Concentration on Heat Transfer Enhancement of the Twin Impingement Jet of a Heated Aluminum Plate. Faris Abdullah M; Zulkifli R; Harun Z; Abdullah S; Wan Ghopa WA; Soheil Najm A; Humam Sulaiman N Micromachines (Basel); 2019 Mar; 10(3):. PubMed ID: 30866409 [TBL] [Abstract][Full Text] [Related]
8. Numerical Study of Laminar Flow and Convective Heat Transfer Utilizing Nanofluids in Equilateral Triangular Ducts with Constant Heat Flux. Ting HH; Hou SS Materials (Basel); 2016 Jul; 9(7):. PubMed ID: 28773698 [TBL] [Abstract][Full Text] [Related]
9. Numerical evaluation of cooling performances of semiconductor using CuO/water nanofluids. Mukesh Kumar PC; Arun Kumar CM Heliyon; 2019 Aug; 5(8):e02227. PubMed ID: 31440592 [TBL] [Abstract][Full Text] [Related]
10. A CFD Study on Heat Transfer Performance of SiO Ba TL; Gróf G; Odhiambo VO; Wongwises S; Szilágyi IM Nanomaterials (Basel); 2022 Jan; 12(3):. PubMed ID: 35159644 [TBL] [Abstract][Full Text] [Related]
11. CFD simulation of the effect of particle size on the nanofluids convective heat transfer in the developed region in a circular tube. Davarnejad R; Barati S; Kooshki M Springerplus; 2013 Dec; 2(1):192. PubMed ID: 23687629 [TBL] [Abstract][Full Text] [Related]
12. Investigation of Laminar Convective Heat Transfer for Al₂O₃-Water Nanofluids Flowing through a Square Cross-Section Duct with a Constant Heat Flux. Ting HH; Hou SS Materials (Basel); 2015 Aug; 8(8):5321-5335. PubMed ID: 28793507 [TBL] [Abstract][Full Text] [Related]
13. CFD analysis on heat and flow characteristics of double helically coiled tube heat exchanger handling MWCNT/water nanofluids. Mukesh Kumar PC; Chandrasekar M Heliyon; 2019 Jul; 5(7):e02030. PubMed ID: 31388569 [TBL] [Abstract][Full Text] [Related]
14. Numerical investigation of heat transfer enhancement in a rectangular heated pipe for turbulent nanofluid. Yarmand H; Gharehkhani S; Kazi SN; Sadeghinezhad E; Safaei MR ScientificWorldJournal; 2014; 2014():369593. PubMed ID: 25254236 [TBL] [Abstract][Full Text] [Related]
15. Thermal Management of Microelectronic Devices Using Nanofluid with Metal foam Heat Sink. Tahir MT; Anwar S; Ahmad N; Sattar M; Qazi UW; Ghafoor U; Bhutta MR Micromachines (Basel); 2023 Jul; 14(7):. PubMed ID: 37512786 [TBL] [Abstract][Full Text] [Related]
16. Numerical analysis of magnetohydrodynamics in an Eyring-Powell hybrid nanofluid flow on wall jet heat and mass transfer. Yaseen M; Rawat SK; Khan U; Sarris IE; Khan H; Negi AS; Khan A; Sherif EM; Hassan AM; Zaib A Nanotechnology; 2023 Sep; 34(48):. PubMed ID: 37625394 [TBL] [Abstract][Full Text] [Related]
17. Predicting MHD mixed convection in a semicircular cavity with hybrid nanofluids using AI. Das P; Mamun MAH Heliyon; 2024 Oct; 10(19):e38303. PubMed ID: 39386854 [TBL] [Abstract][Full Text] [Related]
18. Numerical study of a confined slot impinging jet with nanofluids. Manca O; Mesolella P; Nardini S; Ricci D Nanoscale Res Lett; 2011 Mar; 6(1):188. PubMed ID: 21711743 [TBL] [Abstract][Full Text] [Related]
19. Mach number effect on jet impingement heat transfer. Brevet P; Dorignac E; Vullierme JJ Ann N Y Acad Sci; 2001 May; 934():409-16. PubMed ID: 11460655 [TBL] [Abstract][Full Text] [Related]
20. Investigation of heat transfer in turbulent nanofluids using direct numerical simulations. Kondaraju S; Jin EK; Lee JS Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jan; 81(1 Pt 2):016304. PubMed ID: 20365457 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]