These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 37297121)
1. Effect of Annealing Temperature on Mechanical Properties and Work Hardening of Nickel-Saving Stainless Steel. Pei W; Yang S; Cao K; Zhao A Materials (Basel); 2023 May; 16(11):. PubMed ID: 37297121 [TBL] [Abstract][Full Text] [Related]
2. On the mechanical behavior of austenitic stainless steel with nano/ultrafine grains and comparison with micrometer austenitic grains counterpart and their biological functions. Gong N; Hu C; Hu B; An B; Misra RDK J Mech Behav Biomed Mater; 2020 Jan; 101():103433. PubMed ID: 31539734 [TBL] [Abstract][Full Text] [Related]
3. The significance of phase reversion-induced nanograined/ultrafine-grained (NG/UFG) structure on the strain hardening behavior and deformation mechanism in copper-bearing antimicrobial austenitic stainless steel. Dong H; Li ZC; Somani MC; Misra RDK J Mech Behav Biomed Mater; 2021 Jul; 119():104489. PubMed ID: 33780850 [TBL] [Abstract][Full Text] [Related]
4. The significance of phase reversion-induced nanograined/ultrafine-grained structure on the load-controlled deformation response and related mechanism in copper-bearing austenitic stainless steel. Hu CY; Somani MC; Misra RDK; Yang CG J Mech Behav Biomed Mater; 2020 Apr; 104():103666. PubMed ID: 32174424 [TBL] [Abstract][Full Text] [Related]
5. Yield stress of duplex stainless steel specimens estimated using a compound Hall-Petch equation. Hirota N; Yin F; Azuma T; Inoue T Sci Technol Adv Mater; 2010 Apr; 11(2):025004. PubMed ID: 27877332 [TBL] [Abstract][Full Text] [Related]
6. Investigation of microstructure evolution and martensite transformation developed in austenitic stainless steel subjected to a plastic strain gradient: A combination study of Mirco-XRD, EBSD, and ECCI techniques. Berahmand M; Ketabchi M; Jamshidian M; Tsurekawa S Micron; 2021 Apr; 143():103014. PubMed ID: 33549854 [TBL] [Abstract][Full Text] [Related]
7. Effect of Grain Size on the Plastic Deformation Behaviors of a Fe-18Mn-1.3Al-0.6C Austenitic Steel. Cui Z; He S; Tang J; Fu D; Teng J; Jiang F Materials (Basel); 2022 Dec; 15(24):. PubMed ID: 36556524 [TBL] [Abstract][Full Text] [Related]
8. Effect of Rolling Temperature on Microstructure Evolution and Mechanical Properties of AISI316LN Austenitic Stainless Steel. Xiong Y; Yue Y; He T; Lu Y; Ren F; Cao W Materials (Basel); 2018 Aug; 11(9):. PubMed ID: 30158476 [TBL] [Abstract][Full Text] [Related]
9. Recrystallisation behaviour of a fully austenitic Nb-stabilised stainless steel. Barcellini C; Dumbill S; Jimenez-Melero E J Microsc; 2019 Apr; 274(1):3-12. PubMed ID: 30561019 [TBL] [Abstract][Full Text] [Related]
10. The Impact of Process Parameters on Microstructure and Mechanical Properties of Stainless Steel/Carbon Steel Clad Rebar. Feng YY; Yu H; Luo ZA; Misra RDK; Xie GM Materials (Basel); 2019 Sep; 12(18):. PubMed ID: 31491984 [TBL] [Abstract][Full Text] [Related]
11. Superior Strength and Ductility of 304 Austenitic Stainless Steel with Gradient Dislocations. Pan Q; Guo S; Cui F; Jing L; Lu L Nanomaterials (Basel); 2021 Oct; 11(10):. PubMed ID: 34685054 [TBL] [Abstract][Full Text] [Related]
12. Hierarchical Multiple Precursors Induced Heterogeneous Structures in Super Austenitic Stainless Steels by Cryogenic Rolling and Annealing. Tan D; Fu B; Guan W; Li Y; Guo Y; Wei L; Ding Y Materials (Basel); 2023 Sep; 16(18):. PubMed ID: 37763575 [TBL] [Abstract][Full Text] [Related]
13. The significance of deformation mechanisms on the fracture behavior of phase reversion-induced nanostructured austenitic stainless steel. Misra RDK; Injeti VSY; Somani MC Sci Rep; 2018 May; 8(1):7908. PubMed ID: 29784921 [TBL] [Abstract][Full Text] [Related]
14. Gradient Microstructure Design in Stainless Steel: A Strategy for Uniting Strength-Ductility Synergy and Corrosion Resistance. He Q; Wei W; Wang MS; Guo FJ; Zhai Y; Wang YF; Huang CX Nanomaterials (Basel); 2021 Sep; 11(9):. PubMed ID: 34578669 [TBL] [Abstract][Full Text] [Related]
15. Effect of ultrafine grain on tensile behaviour and corrosion resistance of the duplex stainless steel. Jinlong L; Tongxiang L; Chen W; Limin D Mater Sci Eng C Mater Biol Appl; 2016 May; 62():558-63. PubMed ID: 26952459 [TBL] [Abstract][Full Text] [Related]
16. A Shear Strain Route Dependency of Martensite Formation in 316L Stainless Steel. Kang SH; Kim TK; Jang J; Oh KH Microsc Microanal; 2015 Jun; 21(3):582-7. PubMed ID: 26149344 [TBL] [Abstract][Full Text] [Related]
17. Molecular Dynamics as a Means to Investigate Grain Size and Strain Rate Effect on Plastic Deformation of 316 L Nanocrystalline Stainless-Steel. Husain A; La P; Hongzheng Y; Jie S Materials (Basel); 2020 Jul; 13(14):. PubMed ID: 32698390 [TBL] [Abstract][Full Text] [Related]
19. Microstructure Evolution of 316L Steel Prepared with the Use of Additive and Conventional Methods and Subjected to Dynamic Loads: A Comparative Study. Ziętala M; Durejko T; Panowicz R; Konarzewski M Materials (Basel); 2020 Oct; 13(21):. PubMed ID: 33142708 [TBL] [Abstract][Full Text] [Related]
20. The Effect of Strain Rate on Hydrogen-Assisted Deformation Behavior and Microstructure in AISI 316L Austenitic Stainless Steel. Astafurova E; Fortuna A; Melnikov E; Astafurov S Materials (Basel); 2023 Apr; 16(8):. PubMed ID: 37109819 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]