These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 37297195)

  • 21. Low percolation threshold of graphene/polymer composites prepared by solvothermal reduction of graphene oxide in the polymer solution.
    He L; Tjong SC
    Nanoscale Res Lett; 2013 Mar; 8(1):132. PubMed ID: 23522102
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Influence of Polymer Processing on the Double Electrical Percolation Threshold in PLA/PCL/GNP Nanocomposites.
    Masarra NA; Quantin JC; Batistella M; El Hage R; Pucci MF; Lopez-Cuesta JM
    Sensors (Basel); 2022 Nov; 22(23):. PubMed ID: 36501934
    [TBL] [Abstract][Full Text] [Related]  

  • 23. In situ thermally reduced graphene oxide/epoxy composites: thermal and mechanical properties.
    Olowojoba GB; Eslava S; Gutierrez ES; Kinloch AJ; Mattevi C; Rocha VG; Taylor AC
    Appl Nanosci; 2016; 6(7):1015-1022. PubMed ID: 32355586
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of chemical modification of graphene on mechanical, electrical, and thermal properties of polyimide/graphene nanocomposites.
    Ha HW; Choudhury A; Kamal T; Kim DH; Park SY
    ACS Appl Mater Interfaces; 2012 Sep; 4(9):4623-30. PubMed ID: 22928645
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The piezoresistive effect in graphene-based polymeric composites.
    Tamburrano A; Sarasini F; De Bellis G; D'Aloia AG; Sarto MS
    Nanotechnology; 2013 Nov; 24(46):465702. PubMed ID: 24149437
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Preparation and properties of novel binary and ternary highly amorphous poly(vinyl alcohol)-based composites with hybrid nanofillers.
    Stepura A; Mičušik M; Olivieri F; Gentile G; Lavorgna M; Avella M; Matysová E; Vilčáková J; Omastová M
    Sci Rep; 2023 Nov; 13(1):19126. PubMed ID: 37926746
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Highly conductive graphene by low-temperature thermal reduction and in situ preparation of conductive polymer nanocomposites.
    Yang L; Kong J; Yee WA; Liu W; Phua SL; Toh CL; Huang S; Lu X
    Nanoscale; 2012 Aug; 4(16):4968-71. PubMed ID: 22797422
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Graphene networks with low percolation threshold in ABS nanocomposites: selective localization and electrical and rheological properties.
    Gao C; Zhang S; Wang F; Wen B; Han C; Ding Y; Yang M
    ACS Appl Mater Interfaces; 2014 Aug; 6(15):12252-60. PubMed ID: 24969179
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of the reduced graphene oxide (rGO) compaction degree and concentration on rGO-polymer composite printability and cell interactions.
    Cámara-Torres M; Sinha R; Eqtesadi S; Wendelbo R; Scatto M; Scopece P; Sanchez A; Villanueva S; Egizabal A; Álvarez N; Patelli A; Mota C; Moroni L
    Nanoscale; 2021 Sep; 13(34):14382-14398. PubMed ID: 34473168
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Highly Sensitive Piezoresistive Graphene-Based Stretchable Composites for Sensing Applications.
    Costa P; Gonçalves S; Mora H; Carabineiro SAC; Viana JC; Lanceros-Mendez S
    ACS Appl Mater Interfaces; 2019 Dec; 11(49):46286-46295. PubMed ID: 31725262
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cellulose nanocrystals‑silver nanoparticles-reduced graphene oxide based hybrid PVA nanocomposites and its antimicrobial properties.
    Pal N; Banerjee S; Roy P; Pal K
    Int J Biol Macromol; 2021 Nov; 191():445-456. PubMed ID: 34555401
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A facile way to produce epoxy nanocomposites having excellent thermal conductivity with low contents of reduced graphene oxide.
    Olowojoba GB; Kopsidas S; Eslava S; Gutierrez ES; Kinloch AJ; Mattevi C; Rocha VG; Taylor AC
    J Mater Sci; 2017; 52(12):7323-7344. PubMed ID: 32226133
    [TBL] [Abstract][Full Text] [Related]  

  • 33. 3D Printing of Covalent Functionalized Graphene Oxide Nanocomposite via Stereolithography.
    Palaganas JO; Palaganas NB; Ramos LJI; David CPC
    ACS Appl Mater Interfaces; 2019 Dec; 11(49):46034-46043. PubMed ID: 31713406
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enhancing the electrical conductivity of a hybrid POSS-PCL/graphene nanocomposite polymer.
    Nezakati T; Tan A; Seifalian AM
    J Colloid Interface Sci; 2014 Dec; 435():145-55. PubMed ID: 25240216
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Reduced Graphene Oxide Heterostructured Silver Nanoparticles Significantly Enhanced Thermal Conductivities in Hot-Pressed Electrospun Polyimide Nanocomposites.
    Guo Y; Yang X; Ruan K; Kong J; Dong M; Zhang J; Gu J; Guo Z
    ACS Appl Mater Interfaces; 2019 Jul; 11(28):25465-25473. PubMed ID: 31268646
    [TBL] [Abstract][Full Text] [Related]  

  • 36.
    Hu W; Liu S; Wang Z; Feng X; Gao M; Song F
    Front Chem; 2022; 10():856556. PubMed ID: 35392418
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A Superior Method for Constructing Electrical Percolation Network of Nanocomposite Fibers: In Situ Thermally Reduced Silver Nanoparticles.
    Ajmal CM; Bae S; Baik S
    Small; 2019 Jan; 15(1):e1803255. PubMed ID: 30515984
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enhanced Electrical and Thermal Conductivities of Polymer Composites with a Segregated Network of Graphene Nanoplatelets.
    Kim KH; Jang JU; Yoo GY; Kim SH; Oh MJ; Kim SY
    Materials (Basel); 2023 Jul; 16(15):. PubMed ID: 37570033
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Multidimensional Ternary Hybrids with Synergistically Enhanced Electrical Performance for Conductive Nanocomposites and Prosthetic Electronic Skin.
    Hu Y; Liu X; Tian L; Zhao T; Wang H; Liang X; Zhou F; Zhu P; Li G; Sun R; Wong CP
    ACS Appl Mater Interfaces; 2018 Nov; 10(44):38493-38505. PubMed ID: 30351905
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nanocarbon/Poly(Lactic) Acid for 3D Printing: Effect of Fillers Content on Electromagnetic and Thermal Properties.
    Spinelli G; Lamberti P; Tucci V; Kotsilkova R; Ivanov E; Menseidov D; Naddeo C; Romano V; Guadagno L; Adami R; Meisak D; Bychanok D; Kuzhir P
    Materials (Basel); 2019 Jul; 12(15):. PubMed ID: 31349597
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.