These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 37297195)
41. Effects of Graphene Oxidation on Interaction Energy and Interfacial Thermal Conductivity of Polymer Nanocomposite: A Molecular Dynamics Approach. Bellussi FM; Sáenz Ezquerro C; Laspalas M; Chiminelli A Nanomaterials (Basel); 2021 Jun; 11(7):. PubMed ID: 34209557 [TBL] [Abstract][Full Text] [Related]
42. Monitoring Water Absorption and Desorption in Untreated and Consolidated Tuff by a Non-Invasive Graphene-Based Humidity Sensor. Olivieri F; Castaldo R; Gentile G; Lavorgna M Materials (Basel); 2023 Feb; 16(5):. PubMed ID: 36902993 [TBL] [Abstract][Full Text] [Related]
43. Highly conductive poly(methyl methacrylate) (PMMA)-reduced graphene oxide composite prepared by self-assembly of PMMA latex and graphene oxide through electrostatic interaction. Pham VH; Dang TT; Hur SH; Kim EJ; Chung JS ACS Appl Mater Interfaces; 2012 May; 4(5):2630-6. PubMed ID: 22512434 [TBL] [Abstract][Full Text] [Related]
44. An effective non-covalent grafting approach to functionalize individually dispersed reduced graphene oxide sheets with high grafting density, solubility and electrical conductivity. Wang H; Bi SG; Ye YS; Xue Y; Xie XL; Mai YW Nanoscale; 2015 Feb; 7(8):3548-57. PubMed ID: 25630871 [TBL] [Abstract][Full Text] [Related]
45. Dependence of Electrical Conductivity on Phase Morphology for Graphene Selectively Located at the Interface of Polypropylene/Polyethylene Composites. Tu C; Nagata K; Yan S Nanomaterials (Basel); 2022 Feb; 12(3):. PubMed ID: 35159854 [TBL] [Abstract][Full Text] [Related]
46. Enhancing the Heat Transfer Efficiency in Graphene-Epoxy Nanocomposites Using a Magnesium Oxide-Graphene Hybrid Structure. Du FP; Yang W; Zhang F; Tang CY; Liu SP; Yin L; Law WC ACS Appl Mater Interfaces; 2015 Jul; 7(26):14397-403. PubMed ID: 26075677 [TBL] [Abstract][Full Text] [Related]
47. Straightforward Strategy Toward In Situ Water-Phase Exfoliation and Improved Interfacial Adhesion to Fabricate High-Performance Polypropylene/Graphene Nanocomposites. Hu B; Wang L; Zeng J; Ge Y; Pan S; Shao Y; Lu H ACS Appl Mater Interfaces; 2023 Aug; 15(31):37903-37915. PubMed ID: 37493641 [TBL] [Abstract][Full Text] [Related]
48. Graphene Based Poly(Vinyl Alcohol) Nanocomposites Prepared by In Situ Green Reduction of Graphene Oxide by Ascorbic Acid: Influence of Graphene Content and Glycerol Plasticizer on Properties. Cobos M; Fernández MJ; Fernández MD Nanomaterials (Basel); 2018 Dec; 8(12):. PubMed ID: 30563225 [TBL] [Abstract][Full Text] [Related]
49. Melt Rheology and Mechanical Characteristics of Poly(Lactic Acid)/Alkylated Graphene Oxide Nanocomposites. Park IH; Lee JY; Ahn SJ; Choi HJ Polymers (Basel); 2020 Oct; 12(10):. PubMed ID: 33086526 [TBL] [Abstract][Full Text] [Related]
51. Thermal Percolation Threshold and Thermal Properties of Composites with High Loading of Graphene and Boron Nitride Fillers. Kargar F; Barani Z; Salgado R; Debnath B; Lewis JS; Aytan E; Lake RK; Balandin AA ACS Appl Mater Interfaces; 2018 Oct; 10(43):37555-37565. PubMed ID: 30299919 [TBL] [Abstract][Full Text] [Related]
52. Polymer Grafted Nanoparticle Composites with Enhanced Thermal and Mechanical Properties. Kubiak JM; Li B; Suazo M; Macfarlane RJ ACS Appl Mater Interfaces; 2022 May; 14(18):21535-21543. PubMed ID: 35500102 [TBL] [Abstract][Full Text] [Related]
53. Thermal, Mechanical, and Electrical Properties of Graphene Nanoplatelet/Graphene Oxide/ Polyurethane Hybrid Nanocomposite. Pokharel P; Lee SH; Lee DS J Nanosci Nanotechnol; 2015 Jan; 15(1):211-4. PubMed ID: 26328332 [TBL] [Abstract][Full Text] [Related]
54. Experimental and theoretical study of the influence of the state of dispersion of graphene on the percolation threshold of conductive graphene/polystyrene nanocomposites. Tkalya E; Ghislandi M; Otten R; Lotya M; Alekseev A; van der Schoot P; Coleman J; de With G; Koning C ACS Appl Mater Interfaces; 2014 Sep; 6(17):15113-21. PubMed ID: 25116440 [TBL] [Abstract][Full Text] [Related]
55. Interactive oxidation-reduction reaction for the in situ synthesis of graphene-phenol formaldehyde composites with enhanced properties. Zhao X; Li Y; Wang J; Ouyang Z; Li J; Wei G; Su Z ACS Appl Mater Interfaces; 2014 Mar; 6(6):4254-63. PubMed ID: 24588055 [TBL] [Abstract][Full Text] [Related]
57. Synthesis, characterization, and in vitro studies of graphene oxide/chitosan-polyvinyl alcohol films. Pandele AM; Ionita M; Crica L; Dinescu S; Costache M; Iovu H Carbohydr Polym; 2014 Feb; 102():813-20. PubMed ID: 24507351 [TBL] [Abstract][Full Text] [Related]
58. Effects of the Nanofillers on Physical Properties of Acrylonitrile-Butadiene-Styrene Nanocomposites: Comparison of Graphene Nanoplatelets and Multiwall Carbon Nanotubes. Dul S; Pegoretti A; Fambri L Nanomaterials (Basel); 2018 Aug; 8(9):. PubMed ID: 30158474 [TBL] [Abstract][Full Text] [Related]
59. Geometrical and physical effects of nanofillers on percolation and electrical conductivity of polymer carbon-based nanocomposites: a general micro-mechanical model. Payandehpeyman J; Mazaheri M Soft Matter; 2023 Jan; 19(3):530-539. PubMed ID: 36541407 [TBL] [Abstract][Full Text] [Related]
60. Carbonaceous Filler Type and Content Dependence of the Physical-Chemical and Electromechanical Properties of Thermoplastic Elastomer Polymer Composites. Dios JR; García-Astrain C; Costa P; Viana JC; Lanceros-Méndez S Materials (Basel); 2019 Apr; 12(9):. PubMed ID: 31052175 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]