These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 37297211)
1. Preparation and Characterization of Crosslinked Electrospun Gelatin Fabrics via Maillard Reactions. Dechojarassri D; Kaneshige R; Tamura H; Furuike T Materials (Basel); 2023 May; 16(11):. PubMed ID: 37297211 [TBL] [Abstract][Full Text] [Related]
2. Fabrication of nonwoven fabrics consisting of gelatin nanofibers cross-linked by glutaraldehyde or N-acetyl-d-glucosamine by aqueous method. Furuike T; Chaochai T; Okubo T; Mori T; Tamura H Int J Biol Macromol; 2016 Dec; 93(Pt B):1530-1538. PubMed ID: 27020944 [TBL] [Abstract][Full Text] [Related]
3. Effects of poly(lactic-co-glycolic acid) (PLGA) degradability on the apatite-forming capacity of electrospun PLGA/SiO(2)-CaO nonwoven composite fabrics. Kim IA; Rhee SH J Biomed Mater Res B Appl Biomater; 2010 Apr; 93(1):218-26. PubMed ID: 20091921 [TBL] [Abstract][Full Text] [Related]
4. Osteoconductive and degradable electrospun nonwoven poly(epsilon-caprolactone)/CaO-SiO2 gel composite fabric. Seol YJ; Kim KH; Kim IA; Rhee SH J Biomed Mater Res A; 2010 Aug; 94(2):649-59. PubMed ID: 20213814 [TBL] [Abstract][Full Text] [Related]
5. Influence of the Maillard Reaction on Properties of Air-Assisted Electrospun Gelatin/Zein/Glucose Nanofibers. Liu S; Luo S; Li Y; Zhang H; Yuan Z; Shang L; Deng L Foods; 2023 Jan; 12(3):. PubMed ID: 36765981 [TBL] [Abstract][Full Text] [Related]
6. In situ crosslinking of electrospun gelatin for improved fiber morphology retention and tunable degradation. Kishan AP; Nezarati RM; Radzicki CM; Renfro AL; Robinson JL; Whitely ME; Cosgriff-Hernandez EM J Mater Chem B; 2015 Oct; 3(40):7930-7938. PubMed ID: 32262902 [TBL] [Abstract][Full Text] [Related]
7. Electrospun oriented gelatin-hydroxyapatite fiber scaffolds for bone tissue engineering. Salifu AA; Lekakou C; Labeed FH J Biomed Mater Res A; 2017 Jul; 105(7):1911-1926. PubMed ID: 28263431 [TBL] [Abstract][Full Text] [Related]
8. Electrospun silk fibroin-gelatin composite tubular matrices as scaffolds for small diameter blood vessel regeneration. Marcolin C; Draghi L; Tanzi M; Faré S J Mater Sci Mater Med; 2017 May; 28(5):80. PubMed ID: 28397163 [TBL] [Abstract][Full Text] [Related]
9. Storage stability of electrospun pure gelatin stabilized with EDC/Sulfo-NHS. Ghassemi Z; Slaughter G Biopolymers; 2018 Sep; 109(9):e23232. PubMed ID: 30191551 [TBL] [Abstract][Full Text] [Related]
10. Bioactivity, pre-osteoblastic cell responses, and osteoconductivity evaluations of the electrospun non-woven SiO2-CaO gel fabrics. Seol YJ; Kim KH; Kang YM; Kim IA; Rhee SH J Biomed Mater Res B Appl Biomater; 2009 Aug; 90(2):679-87. PubMed ID: 19213049 [TBL] [Abstract][Full Text] [Related]
12. Preparation, characterization, and evaluation of genipin crosslinked chitosan/gelatin three-dimensional scaffolds for liver tissue engineering applications. Zhang Y; Wang QS; Yan K; Qi Y; Wang GF; Cui YL J Biomed Mater Res A; 2016 Aug; 104(8):1863-70. PubMed ID: 27027247 [TBL] [Abstract][Full Text] [Related]
13. Electrospun chitosan-gelatin nanofiberous scaffold: fabrication and in vitro evaluation. Jafari J; Emami SH; Samadikuchaksaraei A; Bahar MA; Gorjipour F Biomed Mater Eng; 2011; 21(2):99-112. PubMed ID: 21654066 [TBL] [Abstract][Full Text] [Related]
14. Molecular characterization of a novel chitinase Zhang A; He Y; Wei G; Zhou J; Dong W; Chen K; Ouyang P Biotechnol Biofuels; 2018; 11():179. PubMed ID: 29983742 [TBL] [Abstract][Full Text] [Related]
15. Gelatin - Oxidized carboxymethyl cellulose blend based tubular electrospun scaffold for vascular tissue engineering. Joy J; Pereira J; Aid-Launais R; Pavon-Djavid G; Ray AR; Letourneur D; Meddahi-Pellé A; Gupta B Int J Biol Macromol; 2018 Feb; 107(Pt B):1922-1935. PubMed ID: 29032216 [TBL] [Abstract][Full Text] [Related]
16. Constructing Sandwich-Architectured Poly(l-lactide)/High-Melting-Point Poly(l-lactide) Nonwoven Fabrics: Toward Heat-Resistant Poly(l-lactide) Barrier Biocomposites with Full Biodegradability. Gao T; Zhao SJ; Bao RY; Zhong GJ; Li ZM; Yang MB; Yang W ACS Appl Bio Mater; 2019 Mar; 2(3):1357-1367. PubMed ID: 35021382 [TBL] [Abstract][Full Text] [Related]
17. An acidic, thermostable exochitinase with β-N-acetylglucosaminidase activity from Paenibacillus barengoltzii converting chitin to N-acetyl glucosamine. Fu X; Yan Q; Yang S; Yang X; Guo Y; Jiang Z Biotechnol Biofuels; 2014; 7(1):174. PubMed ID: 25550712 [TBL] [Abstract][Full Text] [Related]
18. Fabrication of PU/PEGMA crosslinked hybrid scaffolds by in situ UV photopolymerization favoring human endothelial cells growth for vascular tissue engineering. Wang H; Feng Y; An B; Zhang W; Sun M; Fang Z; Yuan W; Khan M J Mater Sci Mater Med; 2012 Jun; 23(6):1499-510. PubMed ID: 22430593 [TBL] [Abstract][Full Text] [Related]
19. Optimization of electrospinning process & parameters for producing defect-free chitosan/polyethylene oxide nanofibers for bone tissue engineering. Singh YP; Dasgupta S; Nayar S; Bhaskar R J Biomater Sci Polym Ed; 2020 Apr; 31(6):781-803. PubMed ID: 31958253 [TBL] [Abstract][Full Text] [Related]
20. Gelatin hydrogel nonwoven fabrics of a cell culture scaffold to formulate 3-dimensional cell constructs. Saotome T; Shimada N; Matsuno K; Nakamura K; Tabata Y Regen Ther; 2021 Dec; 18():418-429. PubMed ID: 34722838 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]