These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 37297240)
1. Elucidating the Effects of Interconnecting Layer Thickness and Bandgap Variations on the Performance of Monolithic Perovskite/Silicon Tandem Solar Cell by wxAMPS. Mohamad IS; Doroody C; Alkharasani WM; Norizan MN; Chelvanathan P; Shahahmadi SA; Amin N Materials (Basel); 2023 May; 16(11):. PubMed ID: 37297240 [TBL] [Abstract][Full Text] [Related]
2. Influence of Component Properties on the Photovoltaic Performance of Monolithic Perovskite/Organic Tandem Solar Cells: Sub-Cell, Interconnecting Layer, and Photovoltaic Parameters. Xie YM; Yao Q; Yip HL; Cao Y Small Methods; 2023 Apr; 7(4):e2201255. PubMed ID: 36782077 [TBL] [Abstract][Full Text] [Related]
3. Tuning of the Interconnecting Layer for Monolithic Perovskite/Organic Tandem Solar Cells with Record Efficiency Exceeding 21. Wang P; Li W; Sandberg OJ; Guo C; Sun R; Wang H; Li D; Zhang H; Cheng S; Liu D; Min J; Armin A; Wang T Nano Lett; 2021 Sep; 21(18):7845-7854. PubMed ID: 34505789 [TBL] [Abstract][Full Text] [Related]
4. Comprehensive device simulation of 23.36% efficient two-terminal perovskite-PbS CQD tandem solar cell for low-cost applications. Madan J; Singh K; Pandey R Sci Rep; 2021 Oct; 11(1):19829. PubMed ID: 34615903 [TBL] [Abstract][Full Text] [Related]
5. Light Management Enhancement for Four-Terminal Perovskite-Silicon Tandem Solar Cells: The Impact of the Optical Properties and Thickness of the Spacer Layer between Sub-Cells. Hajjiah A; Parmouneh F; Hadipour A; Jaysankar M; Aernouts T Materials (Basel); 2018 Dec; 11(12):. PubMed ID: 30562986 [TBL] [Abstract][Full Text] [Related]
6. Comparing optical performance of a wide range of perovskite/silicon tandem architectures under real-world conditions. Singh M; Santbergen R; Syifai I; Weeber A; Zeman M; Isabella O Nanophotonics; 2020 Jun; 10(8):2043-2057. PubMed ID: 36406046 [TBL] [Abstract][Full Text] [Related]
7. High-Performance 1 cm Zhang Z; Cueto C; Ding Y; Yu L; Russell TP; Emrick T; Liu Y ACS Appl Mater Interfaces; 2022 Jul; 14(26):29896-29904. PubMed ID: 35758244 [TBL] [Abstract][Full Text] [Related]
8. Design of perovskite/crystalline-silicon monolithic tandem solar cells. Altazin S; Stepanova L; Werner J; Niesen B; Ballif C; Ruhstaller B Opt Express; 2018 May; 26(10):A579-A590. PubMed ID: 29801275 [TBL] [Abstract][Full Text] [Related]
9. 16.8% Monolithic all-perovskite triple-junction solar cells via a universal two-step solution process. Wang J; Zardetto V; Datta K; Zhang D; Wienk MM; Janssen RAJ Nat Commun; 2020 Oct; 11(1):5254. PubMed ID: 33067448 [TBL] [Abstract][Full Text] [Related]
10. Recent Progress of Wide Bandgap Perovskites towards Two-Terminal Perovskite/Silicon Tandem Solar Cells. Chen Q; Zhou L; Zhang J; Chen D; Zhu W; Xi H; Zhang J; Zhang C; Hao Y Nanomaterials (Basel); 2024 Jan; 14(2):. PubMed ID: 38251165 [TBL] [Abstract][Full Text] [Related]
11. Exploring the impact of defect energy levels in CdTe/Si dual-junction solar cells using wxAMPS. Isah M; Doroody C; Rahman KS; Rahman MNA; Goje AA; Soudagar MEM; Kiong TS; Mubarak NM; Zuhdi AWM Sci Rep; 2024 Feb; 14(1):4804. PubMed ID: 38413807 [TBL] [Abstract][Full Text] [Related]
12. Optical modeling of wide-bandgap perovskite and perovskite/silicon tandem solar cells using complex refractive indices for arbitrary-bandgap perovskite absorbers. Manzoor S; Häusele J; Bush KA; Palmstrom AF; Carpenter J; Yu ZJ; Bent SF; Mcgehee MD; Holman ZC Opt Express; 2018 Oct; 26(21):27441-27460. PubMed ID: 30469811 [TBL] [Abstract][Full Text] [Related]
13. Recent Progress in Developing Monolithic Perovskite/Si Tandem Solar Cells. Liu N; Wang L; Xu F; Wu J; Song T; Chen Q Front Chem; 2020; 8():603375. PubMed ID: 33415097 [TBL] [Abstract][Full Text] [Related]
14. Investigations aimed at producing 33% efficient perovskite-silicon tandem solar cells through device simulations. Shrivastav N; Madan J; Pandey R; Shalan AE RSC Adv; 2021 Nov; 11(59):37366-37374. PubMed ID: 35496422 [TBL] [Abstract][Full Text] [Related]
15. Efficient Light Management in a Monolithic Tandem Perovskite/Silicon Solar Cell by Using a Hybrid Metasurface. Elshorbagy MH; García-Cámara B; López-Fraguas E; Vergaz R Nanomaterials (Basel); 2019 May; 9(5):. PubMed ID: 31126065 [TBL] [Abstract][Full Text] [Related]
16. Efficient Monolithic Perovskite/Silicon Tandem Solar Cell with Cell Area >1 cm(2). Werner J; Weng CH; Walter A; Fesquet L; Seif JP; De Wolf S; Niesen B; Ballif C J Phys Chem Lett; 2016 Jan; 7(1):161-6. PubMed ID: 26687850 [TBL] [Abstract][Full Text] [Related]
17. Design and optimization of four-terminal mechanically stacked and optically coupled silicon/perovskite tandem solar cells with over 28% efficiency. Raza E; Ahmad Z; Aziz F; Asif M; Mehmood MQ; Bhadra J; Al-Thani NJ Heliyon; 2023 Feb; 9(2):e13477. PubMed ID: 36814632 [TBL] [Abstract][Full Text] [Related]
18. Enhancing electron diffusion length in narrow-bandgap perovskites for efficient monolithic perovskite tandem solar cells. Yang Z; Yu Z; Wei H; Xiao X; Ni Z; Chen B; Deng Y; Habisreutinger SN; Chen X; Wang K; Zhao J; Rudd PN; Berry JJ; Beard MC; Huang J Nat Commun; 2019 Oct; 10(1):4498. PubMed ID: 31582749 [TBL] [Abstract][Full Text] [Related]