These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 37297243)

  • 1. Roughness Control of Surfaces Using a Laser Profilometer with the Selected Material Cutting Technology.
    Ružbarský J
    Materials (Basel); 2023 May; 16(11):. PubMed ID: 37297243
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modelling the Kerf Angle, Roughness and Waviness of the Surface of Inconel 718 in an Abrasive Water Jet Cutting Process.
    Płodzień M; Żyłka Ł; Żak K; Wojciechowski S
    Materials (Basel); 2023 Jul; 16(15):. PubMed ID: 37569993
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation of cutting quality and surface roughness in abrasive water jet machining of bone.
    Shakouri E; Abbasi M
    Proc Inst Mech Eng H; 2018 Sep; 232(9):850-861. PubMed ID: 30052115
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment of the Influence of Selected Technological Parameters on the Morphology Parameters of the Cutting Surfaces of the Hardox 500 Material Cut by Abrasive Water Jet Technology.
    Krenicky T; Olejarova S; Servatka M
    Materials (Basel); 2022 Feb; 15(4):. PubMed ID: 35207922
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling and Machine Learning of Vibration Amplitude and Surface Roughness after Waterjet Cutting.
    Leleń M; Biruk-Urban K; Józwik J; Tomiło P
    Materials (Basel); 2023 Sep; 16(19):. PubMed ID: 37834615
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of Steel Structure on Machinability by Abrasive Water Jet.
    Hlaváčová IM; Sadílek M; Váňová P; Szumilo Š; Tyč M
    Materials (Basel); 2020 Oct; 13(19):. PubMed ID: 33027923
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preliminary Studies into Cutting of a Novel Two Component 3D-Printed Stainless Steel-Polymer Composite Material by Abrasive Water Jet.
    Szatkiewicz T; Perec A; Radomska-Zalas A; Banaszek K; Balasz B
    Materials (Basel); 2023 Jan; 16(3):. PubMed ID: 36770177
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Implant surface roughness alterations induced by different prophylactic procedures: an in vitro study.
    Cafiero C; Aglietta M; Iorio-Siciliano V; Salvi GE; Blasi A; Matarasso S
    Clin Oral Implants Res; 2017 Jul; 28(7):e16-e20. PubMed ID: 27283010
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Advancement of Waterjet-Guided Laser Cutting System for Enhanced Surface Quality in AISI 1020 Steel Sheets.
    Paksoy M; Çandar H; Yılmaz NF
    Materials (Basel); 2024 Jul; 17(14):. PubMed ID: 39063749
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Effect of Abrasive Waterjet Machining Parameters on the Condition of Al-Si Alloy.
    Kulisz M; Zagórski I; Korpysa J
    Materials (Basel); 2020 Jul; 13(14):. PubMed ID: 32668746
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Abrasive water jet cutting as a new procedure for cutting cancellous bone--in vitro testing in comparison with the oscillating saw.
    Schwieger K; Carrero V; Rentzsch R; Becker A; Bishop N; Hille E; Louis H; Morlock M; Honl M
    J Biomed Mater Res B Appl Biomater; 2004 Nov; 71(2):223-8. PubMed ID: 15382033
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancing High-Alloy Steel Cutting with Abrasive Water Injection Jet (AWIJ) Technology: An Approach Using the Response Surface Methodology (RSM).
    Perec A; Kawecka E; Pude F
    Materials (Basel); 2024 Aug; 17(16):. PubMed ID: 39203198
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling and Optimization of Cut Quality Responses in Plasma Jet Cutting of Aluminium Alloy EN AW-5083.
    Peko I; Marić D; Nedić B; Samardžić I
    Materials (Basel); 2021 Sep; 14(19):. PubMed ID: 34639956
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solving the Issue of Discriminant Roughness of Heterogeneous Surfaces Using Elements of Artificial Intelligence.
    Kubišová M; Pata V; Měřínská D; Škrobák A; Marcaník M
    Materials (Basel); 2021 May; 14(10):. PubMed ID: 34067923
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of the AWJM Method on the Machined Surface Layer of AZ91D Magnesium Alloy and Simulation of Roughness Parameters Using Neural Networks.
    Zagórski I; Kłonica M; Kulisz M; Łoza K
    Materials (Basel); 2018 Oct; 11(11):. PubMed ID: 30373216
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative evaluation of surface roughness of posterior primary zirconia crowns.
    Walia T; Brigi C; KhirAllah ARMM
    Eur Arch Paediatr Dent; 2019 Feb; 20(1):33-40. PubMed ID: 30343392
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of coarse grinding, overglazing, and 2 polishing systems on the flexural strength, surface roughness, and phase transformation of yttrium-stabilized tetragonal zirconia.
    Mohammadi-Bassir M; Babasafari M; Rezvani MB; Jamshidian M
    J Prosthet Dent; 2017 Nov; 118(5):658-665. PubMed ID: 28385438
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of Two Polishing Systems on Surface Roughness, Topography, and Flexural Strength of a Monolithic Lithium Disilicate Ceramic.
    Mohammadibassir M; Rezvani MB; Golzari H; Moravej Salehi E; Fahimi MA; Kharazi Fard MJ
    J Prosthodont; 2019 Jan; 28(1):e172-e180. PubMed ID: 28273681
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Research and Optimization of Surface Roughness in Milling of SLM Semi-Finished Parts Manufactured by Using the Different Laser Scanning Speed.
    Matras A
    Materials (Basel); 2019 Dec; 13(1):. PubMed ID: 31861370
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An In Vitro Evaluation of Alumina, Zirconia, and Lithium Disilicate Surface Roughness Caused by Two Scaling Instruments.
    Vigolo P; Buzzo O; Buzzo M; Mutinelli S
    J Prosthodont; 2017 Feb; 26(2):129-135. PubMed ID: 26683122
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.