These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 37297309)

  • 1. Modelling of Fatigue Microfracture in Porous Sintered Steel Using a Phase-Field Method.
    Tomić Z; Jarak T; Lesičar T; Gubeljak N; Tonković Z
    Materials (Basel); 2023 Jun; 16(11):. PubMed ID: 37297309
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Micromechanical Modelling of the Influence of Strain Ratio on Fatigue Crack Initiation in a Martensitic Steel-A Comparison of Different Fatigue Indicator Parameters.
    Schäfer BJ; Sonnweber-Ribic P; Ul Hassan H; Hartmaier A
    Materials (Basel); 2019 Sep; 12(18):. PubMed ID: 31487915
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High Martensitic Steel after Welding with Micro-Jet Cooling in Microstructural and Mechanical Investigations.
    Szczucka-Lasota B; Węgrzyn T; Szymczak T; Jurek A
    Materials (Basel); 2021 Feb; 14(4):. PubMed ID: 33669449
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Constitutive Relationship between Fatigue Limit and Microstructure in Nanostructured Bainitic Steels.
    Mueller I; Rementeria R; Caballero FG; Kuntz M; Sourmail T; Kerscher E
    Materials (Basel); 2016 Oct; 9(10):. PubMed ID: 28773953
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Material heterogeneity, microstructure, and microcracks demonstrate differential influence on crack initiation and propagation in cortical bone.
    Demirtas A; Ural A
    Biomech Model Mechanobiol; 2018 Oct; 17(5):1415-1428. PubMed ID: 29808355
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microstructural responses of Zirconia materials to in-situ SEM nanoindentation.
    Juri AZ; Basak AK; Yin L
    J Mech Behav Biomed Mater; 2021 Jun; 118():104450. PubMed ID: 33740687
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of HIPing on the fatigue and tensile strength of a case, porous-coated Co-Cr-Mo alloy.
    Georgette FS; Davidson JA
    J Biomed Mater Res; 1986 Oct; 20(8):1229-48. PubMed ID: 3782180
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hierarchical Dynamic Bayesian Network-Based Fatigue Crack Propagation Modeling Considering Initial Defects.
    Xu Y; Zhu B; Zhang Z; Chen J
    Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146126
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fatigue Crack Growth Behavior and Fracture Toughness of EH36 TMCP Steel.
    Zhu Q; Zhang P; Peng X; Yan L; Li G
    Materials (Basel); 2021 Nov; 14(21):. PubMed ID: 34772146
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-Cycle, Push-Pull Fatigue Fracture Behavior of High-C, Si-Al-Rich Nanostructured Bainite Steel.
    Zhao J; Ji H; Wang T
    Materials (Basel); 2017 Dec; 11(1):. PubMed ID: 29286325
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-Cycle, Low-Cycle, Extremely Low-Cycle Fatigue and Monotonic Fracture Behaviors of Low-Carbon Steel and Its Welded Joint.
    Kim Y; Hwang W
    Materials (Basel); 2019 Dec; 12(24):. PubMed ID: 31818031
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental and Numerical Study of Combined High and Low Cycle Fatigue Performance of Low Alloy Steel and Engineering Application.
    Tang Z; Chen Z; He Z; Hu X; Xue H; Zhuge H
    Materials (Basel); 2021 Jun; 14(12):. PubMed ID: 34207465
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gigacycle fatigue in high strength steels.
    Furuya Y; Hirukawa H; Takeuchi E
    Sci Technol Adv Mater; 2019; 20(1):643-656. PubMed ID: 31275457
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Damage Mechanisms and Mechanical Properties of High-Strength Multiphase Steels.
    Heibel S; Dettinger T; Nester W; Clausmeyer T; Tekkaya AE
    Materials (Basel); 2018 May; 11(5):. PubMed ID: 29747417
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fracture toughening of peritubular microstructure in biological porous dentine.
    Wang R; Li Q; Niu L; Yang B; Liu G; Zuo H
    J Mech Behav Biomed Mater; 2019 May; 93():194-203. PubMed ID: 30822682
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of the Hardening Behavior and Tensile Properties of a Cold-Rolled Bainitic-Ferritic Steel.
    Bassini E; Sivo A; Ugues D
    Materials (Basel); 2021 Nov; 14(21):. PubMed ID: 34772185
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Age-related properties at the microscale affect crack propagation in cortical bone.
    Gustafsson A; Wallin M; Isaksson H
    J Biomech; 2019 Oct; 95():109326. PubMed ID: 31526587
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An Enhanced Lemaitre Model and Fracture Map for Cr5 Alloy Steel during High-Temperature Forming Process.
    Chen X; Guo L; Zhang B; Bai R
    Materials (Basel); 2022 May; 15(11):. PubMed ID: 35683233
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of heating mode on sinterability of Fe-Ni steels.
    Annamalai AR; Kumar R; Upadhyaya A; Agrawal D
    J Microw Power Electromagn Energy; 2011; 45(4):162-77. PubMed ID: 24428106
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fatigue Life Prediction of Notched Details Using SWT Model and LEFM-Based Approach.
    Hao R; Wen Z; Xin H; Lin W
    Materials (Basel); 2023 Feb; 16(5):. PubMed ID: 36903056
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.