BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 37297334)

  • 1. Estimating Compressive Strength of Concrete Using Neural Electromagnetic Field Optimization.
    Akbarzadeh MR; Ghafourian H; Anvari A; Pourhanasa R; Nehdi ML
    Materials (Basel); 2023 Jun; 16(11):. PubMed ID: 37297334
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigation of ANN architecture for predicting the compressive strength of concrete containing GGBFS.
    Tran VQ; Mai HT; Nguyen TA; Ly HB
    PLoS One; 2021; 16(12):e0260847. PubMed ID: 34860842
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hybrid nonlinear regression model versus MARS, MEP, and ANN to evaluate the effect of the size and content of waste tire rubber on the compressive strength of concrete.
    Ismael Jaf DK; Abdalla A; Mohammed AS; Abdulrahman PI; Rawaz Kurda ; Mohammed AA
    Heliyon; 2024 Feb; 10(4):e25997. PubMed ID: 38384542
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Nature-Inspired Metaheuristic Method for Predicting the Creep Strain of Green Concrete Containing Ground Granulated Blast Furnace Slag.
    Sadowski Ł; Nikoo M; Shariq M; Joker E; Czarnecki S
    Materials (Basel); 2019 Jan; 12(2):. PubMed ID: 30658508
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting the Compressive Strength of the Cement-Fly Ash-Slag Ternary Concrete Using the Firefly Algorithm (FA) and Random Forest (RF) Hybrid Machine-Learning Method.
    Huang J; Sabri MMS; Ulrikh DV; Ahmad M; Alsaffar KAM
    Materials (Basel); 2022 Jun; 15(12):. PubMed ID: 35744249
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metaheuristic Prediction of the Compressive Strength of Environmentally Friendly Concrete Modified with Eggshell Powder Using the Hybrid ANN-SFL Optimization Algorithm.
    Tosee SVR; Faridmehr I; Bedon C; Sadowski Ł; Aalimahmoody N; Nikoo M; Nowobilski T
    Materials (Basel); 2021 Oct; 14(20):. PubMed ID: 34683782
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Concrete Strength Prediction Using Different Machine Learning Processes: Effect of Slag, Fly Ash and Superplasticizer.
    Qi C; Huang B; Wu M; Wang K; Yang S; Li G
    Materials (Basel); 2022 Aug; 15(15):. PubMed ID: 35955301
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting the Compressive Strength of Concrete Containing Fly Ash and Rice Husk Ash Using ANN and GEP Models.
    Al-Hashem MN; Amin MN; Raheel M; Khan K; Alkadhim HA; Imran M; Ullah S; Iqbal M
    Materials (Basel); 2022 Nov; 15(21):. PubMed ID: 36363306
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Systematic multiscale models to predict the compressive strength of fly ash-based geopolymer concrete at various mixture proportions and curing regimes.
    Ahmed HU; Mohammed AS; Mohammed AA; Faraj RH
    PLoS One; 2021; 16(6):e0253006. PubMed ID: 34125869
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Satin bowerbird optimizer-neural network for approximating the capacity of CFST columns under compression.
    Liu Y; Liang Y
    Sci Rep; 2024 Apr; 14(1):8342. PubMed ID: 38594336
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Learned Prediction of Compressive Strength of GGBFS Concrete Using Hybrid Artificial Neural Network Models.
    Han IJ; Yuan TF; Lee JY; Yoon YS; Kim JH
    Materials (Basel); 2019 Nov; 12(22):. PubMed ID: 31717660
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Concrete compressive strength prediction modeling utilizing deep learning long short-term memory algorithm for a sustainable environment.
    Latif SD
    Environ Sci Pollut Res Int; 2021 Jun; 28(23):30294-30302. PubMed ID: 33590396
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Soft computing models to predict the compressive strength of GGBS/FA- geopolymer concrete.
    Ahmed HU; Mohammed AA; Mohammed A
    PLoS One; 2022; 17(5):e0265846. PubMed ID: 35613110
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Comparative Study for the Prediction of the Compressive Strength of Self-Compacting Concrete Modified with Fly Ash.
    Farooq F; Czarnecki S; Niewiadomski P; Aslam F; Alabduljabbar H; Ostrowski KA; Śliwa-Wieczorek K; Nowobilski T; Malazdrewicz S
    Materials (Basel); 2021 Aug; 14(17):. PubMed ID: 34501024
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Non-Tuned Machine Learning Approach for Predicting the Compressive Strength of High-Performance Concrete.
    Al-Shamiri AK; Yuan TF; Kim AJH
    Materials (Basel); 2020 Feb; 13(5):. PubMed ID: 32106394
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting water quality through daily concentration of dissolved oxygen using improved artificial intelligence.
    Yang J
    Sci Rep; 2023 Nov; 13(1):20370. PubMed ID: 37989875
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of the Compressive Strength of Waste-Based Concretes Using Artificial Neural Network.
    Amar M; Benzerzour M; Zentar R; Abriak NE
    Materials (Basel); 2022 Oct; 15(20):. PubMed ID: 36295113
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Artificial Intelligence Approaches for Prediction of Compressive Strength of Geopolymer Concrete.
    Dao DV; Ly HB; Trinh SH; Le TT; Pham BT
    Materials (Basel); 2019 Mar; 12(6):. PubMed ID: 30934566
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative Study of Supervised Machine Learning Algorithms for Predicting the Compressive Strength of Concrete at High Temperature.
    Ahmad A; Ostrowski KA; Maślak M; Farooq F; Mehmood I; Nafees A
    Materials (Basel); 2021 Jul; 14(15):. PubMed ID: 34361416
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Forecasting the strength of preplaced aggregate concrete using interpretable machine learning approaches.
    Javed MF; Fawad M; Lodhi R; Najeh T; Gamil Y
    Sci Rep; 2024 Apr; 14(1):8381. PubMed ID: 38600161
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.