BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 37297410)

  • 1. Stress Adaptation Responses of a
    D'Onofrio F; Schirone M; Paparella A; Krasteva I; Tittarelli M; Pomilio F; Iannetti L; D'Alterio N; Luciani M
    Foods; 2023 May; 12(11):. PubMed ID: 37297410
    [No Abstract]   [Full Text] [Related]  

  • 2. Immunoproteome profiling of Listeria monocytogenes under mild acid and salt stress conditions.
    D'Onofrio F; Visciano P; Krasteva I; Torresi M; Tittarelli M; Pomilio F; Iannetti L; Di Febo T; Paparella A; Schirone M; Luciani M
    Proteomics; 2022 Sep; 22(18):e2200082. PubMed ID: 35916071
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exoproteome analysis reveals higher abundance of proteins linked to alkaline stress in persistent Listeria monocytogenes strains.
    Rychli K; Grunert T; Ciolacu L; Zaiser A; Razzazi-Fazeli E; Schmitz-Esser S; Ehling-Schulz M; Wagner M
    Int J Food Microbiol; 2016 Feb; 218():17-26. PubMed ID: 26594790
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two-dimensional electrophoresis database of Listeria monocytogenes EGDe proteome and proteomic analysis of mid-log and stationary growth phase cells.
    Folio P; Chavant P; Chafsey I; Belkorchia A; Chambon C; Hébraud M
    Proteomics; 2004 Oct; 4(10):3187-201. PubMed ID: 15378702
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strain Variability of
    Aalto-Araneda M; Pöntinen A; Pesonen M; Corander J; Markkula A; Tasara T; Stephan R; Korkeala H
    Appl Environ Microbiol; 2020 Mar; 86(6):. PubMed ID: 31900307
    [No Abstract]   [Full Text] [Related]  

  • 6. Achieving continuous improvement in reductions in foodborne listeriosis--a risk-based approach.
    ;
    J Food Prot; 2005 Sep; 68(9):1932-94. PubMed ID: 16161698
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Time-Resolved Proteome Analysis of
    Birk MS; Ahmed-Begrich R; Tran S; Elsholz AKW; Frese CK; Charpentier E
    mSystems; 2021 Aug; 6(4):e0021521. PubMed ID: 34342529
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The contribution of transcriptomic and proteomic analysis in elucidating stress adaptation responses of Listeria monocytogenes.
    Soni KA; Nannapaneni R; Tasara T
    Foodborne Pathog Dis; 2011 Aug; 8(8):843-52. PubMed ID: 21495855
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MALDI mass spectrometry imaging and in situ microproteomics of Listeria monocytogenes biofilms.
    Santos T; Théron L; Chambon C; Viala D; Centeno D; Esbelin J; Hébraud M
    J Proteomics; 2018 Sep; 187():152-160. PubMed ID: 30071319
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proteomic analysis shows that individual Listeria monocytogenes strains use different strategies in response to gastric stress.
    Melo J; Schrama D; Andrew PW; Faleiro ML
    Foodborne Pathog Dis; 2013 Feb; 10(2):107-19. PubMed ID: 23441912
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification and characterization of nucleotide sequence differences in three virulence-associated genes of listeria monocytogenes strains representing clinically important serotypes.
    Vines A; Swaminathan B
    Curr Microbiol; 1998 May; 36(5):309-18. PubMed ID: 9541569
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Horizontal Gene Transfer and Loss of Serotype-Specific Genes in Listeria monocytogenes Can Lead to Incorrect Serotype Designations with a Commonly-Employed Molecular Serotyping Scheme.
    Brown P; Kucerova Z; Gorski L; Chen Y; Ivanova M; Leekitcharoenphon P; Parsons C; Niedermeyer J; Jackson J; Kathariou S
    Microbiol Spectr; 2023 Feb; 11(1):e0274522. PubMed ID: 36472431
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation of the Listeria monocytogenes Scott A acid tolerance response and associated physiological and phenotypic features via whole proteome analysis.
    Bowman JP; Hages E; Nilsson RE; Kocharunchitt C; Ross T
    J Proteome Res; 2012 Apr; 11(4):2409-26. PubMed ID: 22372944
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Virulence potential of
    Gómez-Laguna J; Cardoso-Toset F; Meza-Torres J; Pizarro-Cerdá J; Quereda JJ
    Vet Rec; 2020 Nov; 187(11):e101. PubMed ID: 33024008
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative proteomic analysis of Listeria monocytogenes strains F2365 and EGD.
    Donaldson JR; Nanduri B; Burgess SC; Lawrence ML
    Appl Environ Microbiol; 2009 Jan; 75(2):366-73. PubMed ID: 19028911
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein expression by Listeria monocytogenes grown on a RTE-meat matrix.
    Mujahid S; Pechan T; Wang C
    Int J Food Microbiol; 2008 Dec; 128(2):203-11. PubMed ID: 18817996
    [TBL] [Abstract][Full Text] [Related]  

  • 17.
    Santos T; Viala D; Chambon C; Esbelin J; Hébraud M
    Front Nutr; 2019; 6():89. PubMed ID: 31259174
    [No Abstract]   [Full Text] [Related]  

  • 18. Comparative analysis of the exoproteomes of Listeria monocytogenes strains grown at low temperatures.
    Cabrita P; Batista S; Machado H; Moes S; Jenö P; Manadas B; Trigo MJ; Monteiro S; Ferreira RB; Brito L
    Foodborne Pathog Dis; 2013 May; 10(5):428-34. PubMed ID: 23531123
    [TBL] [Abstract][Full Text] [Related]  

  • 19. TMT-Based Quantitative Proteomic Analysis of Intestinal Organoids Infected by
    Zhou C; Zou Y; Huang J; Zhao Z; Zhang Y; Wei Y; Ye K
    Int J Mol Sci; 2022 Jun; 23(11):. PubMed ID: 35682909
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Is the exoproteome important for bacterial pathogenesis? Lessons learned from interstrain exoprotein diversity in Listeria monocytogenes grown at different temperatures.
    Cabrita P; Trigo MJ; Ferreira RB; Brito L
    OMICS; 2014 Sep; 18(9):553-69. PubMed ID: 25127015
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.