These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 37298146)

  • 1. Entangled Motifs in Membrane Protein Structures.
    Salicari L; Trovato A
    Int J Mol Sci; 2023 May; 24(11):. PubMed ID: 37298146
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Motifs in outer membrane protein sequences: applications for discrimination.
    Gromiha MM
    Biophys Chem; 2005 Aug; 117(1):65-71. PubMed ID: 15905018
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Folding kinetics of an entangled protein.
    Salicari L; Baiesi M; Orlandini E; Trovato A
    PLoS Comput Biol; 2023 Nov; 19(11):e1011107. PubMed ID: 37956216
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Folding of helical membrane proteins: the role of polar, GxxxG-like and proline motifs.
    Senes A; Engel DE; DeGrado WF
    Curr Opin Struct Biol; 2004 Aug; 14(4):465-79. PubMed ID: 15313242
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Folding Rate Optimization Promotes Frustrated Interactions in Entangled Protein Structures.
    Norbiato F; Seno F; Trovato A; Baiesi M
    Int J Mol Sci; 2019 Dec; 21(1):. PubMed ID: 31892272
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sequence and structural patterns detected in entangled proteins reveal the importance of co-translational folding.
    Baiesi M; Orlandini E; Seno F; Trovato A
    Sci Rep; 2019 Jun; 9(1):8426. PubMed ID: 31182755
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of GxxxG Motifs in Transmembrane Domain Interactions.
    Teese MG; Langosch D
    Biochemistry; 2015 Aug; 54(33):5125-35. PubMed ID: 26244771
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural fragment clustering reveals novel structural and functional motifs in alpha-helical transmembrane proteins.
    Marsico A; Henschel A; Winter C; Tuukkanen A; Vassilev B; Scheubert K; Schroeder M
    BMC Bioinformatics; 2010 Apr; 11():204. PubMed ID: 20420672
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Helix-packing motifs in membrane proteins.
    Walters RF; DeGrado WF
    Proc Natl Acad Sci U S A; 2006 Sep; 103(37):13658-63. PubMed ID: 16954199
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface recognition elements of membrane protein oligomerization.
    Rath A; Deber CM
    Proteins; 2008 Feb; 70(3):786-93. PubMed ID: 17729275
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stability of structurally entangled protein dimers.
    Zhao Y; Cieplak M
    Proteins; 2018 Sep; 86(9):945-955. PubMed ID: 29790597
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phenylalanine promotes interaction of transmembrane domains via GxxxG motifs.
    Unterreitmeier S; Fuchs A; Schäffler T; Heym RG; Frishman D; Langosch D
    J Mol Biol; 2007 Nov; 374(3):705-18. PubMed ID: 17949750
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural insight into co-translational membrane protein folding.
    Pellowe GA; Booth PJ
    Biochim Biophys Acta Biomembr; 2020 Jan; 1862(1):183019. PubMed ID: 31302079
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distinct protein interfaces in transmembrane domains suggest an in vivo folding model.
    Stevens TJ; Mizuguchi K; Arkin IT
    Protein Sci; 2004 Nov; 13(11):3028-37. PubMed ID: 15498942
    [TBL] [Abstract][Full Text] [Related]  

  • 15. KnotProt 2.0: a database of proteins with knots and other entangled structures.
    Dabrowski-Tumanski P; Rubach P; Goundaroulis D; Dorier J; Sulkowski P; Millett KC; Rawdon EJ; Stasiak A; Sulkowska JI
    Nucleic Acids Res; 2019 Jan; 47(D1):D367-D375. PubMed ID: 30508159
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sequence and conformational preferences at termini of α-helices in membrane proteins: role of the helix environment.
    Shelar A; Bansal M
    Proteins; 2014 Dec; 82(12):3420-36. PubMed ID: 25257385
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Insights into the key determinants of membrane protein topology enable the identification of new monotopic folds.
    Entova S; Billod JM; Swiecicki JM; Martín-Santamaría S; Imperiali B
    Elife; 2018 Aug; 7():. PubMed ID: 30168796
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolutionary analysis of polyproline motifs in Escherichia coli reveals their regulatory role in translation.
    Qi F; Motz M; Jung K; Lassak J; Frishman D
    PLoS Comput Biol; 2018 Feb; 14(2):e1005987. PubMed ID: 29389943
    [TBL] [Abstract][Full Text] [Related]  

  • 19. TOPDOM: database of domains and motifs with conservative location in transmembrane proteins.
    Tusnády GE; Kalmár L; Hegyi H; Tompa P; Simon I
    Bioinformatics; 2008 Jun; 24(12):1469-70. PubMed ID: 18434342
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conservation of knotted and slipknotted topology in transmembrane transporters.
    Zayats V; Sikora M; Perlinska AP; Stasiulewicz A; Gren BA; Sulkowska JI
    Biophys J; 2023 Dec; 122(23):4528-4541. PubMed ID: 37919904
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.