BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 37298223)

  • 1. Broadly Applicable Control Approaches Improve Accuracy of ChIP-Seq Data.
    Petrie MV; He Y; Gan Y; Ostrow AZ; Aparicio OM
    Int J Mol Sci; 2023 May; 24(11):. PubMed ID: 37298223
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ChIP-Seq to Analyze the Binding of Replication Proteins to Chromatin.
    Ostrow AZ; Viggiani CJ; Aparicio JG; Aparicio OM
    Methods Mol Biol; 2015; 1300():155-68. PubMed ID: 25916712
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fkh1 and Fkh2 bind multiple chromosomal elements in the S. cerevisiae genome with distinct specificities and cell cycle dynamics.
    Ostrow AZ; Nellimoottil T; Knott SR; Fox CA; Tavaré S; Aparicio OM
    PLoS One; 2014; 9(2):e87647. PubMed ID: 24504085
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SNP-ChIP: a versatile and tag-free method to quantify changes in protein binding across the genome.
    Vale-Silva LA; Markowitz TE; Hochwagen A
    BMC Genomics; 2019 Jan; 20(1):54. PubMed ID: 30654749
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Is this the right normalization? A diagnostic tool for ChIP-seq normalization.
    Angelini C; Heller R; Volkinshtein R; Yekutieli D
    BMC Bioinformatics; 2015 May; 16():150. PubMed ID: 25957089
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recruitment of Fkh1 to replication origins requires precisely positioned Fkh1/2 binding sites and concurrent assembly of the pre-replicative complex.
    Reinapae A; Jalakas K; Avvakumov N; Lõoke M; Kristjuhan K; Kristjuhan A
    PLoS Genet; 2017 Jan; 13(1):e1006588. PubMed ID: 28141805
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Widespread misinterpretable ChIP-seq bias in yeast.
    Park D; Lee Y; Bhupindersingh G; Iyer VR
    PLoS One; 2013; 8(12):e83506. PubMed ID: 24349523
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Software for rapid time dependent ChIP-sequencing analysis (TDCA).
    Myschyshyn M; Farren-Dai M; Chuang TJ; Vocadlo D
    BMC Bioinformatics; 2017 Nov; 18(1):521. PubMed ID: 29178831
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ChIP-exo analysis highlights Fkh1 and Fkh2 transcription factors as hubs that integrate multi-scale networks in budding yeast.
    Mondeel TDGA; Holland P; Nielsen J; Barberis M
    Nucleic Acids Res; 2019 Sep; 47(15):7825-7841. PubMed ID: 31299083
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conserved forkhead dimerization motif controls DNA replication timing and spatial organization of chromosomes in
    Ostrow AZ; Kalhor R; Gan Y; Villwock SK; Linke C; Barberis M; Chen L; Aparicio OM
    Proc Natl Acad Sci U S A; 2017 Mar; 114(12):E2411-E2419. PubMed ID: 28265091
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantification of protein-DNA interactions by in vivo chromatin immunoprecipitation in yeast.
    Pascual-Ahuir A; Proft M
    Methods Mol Biol; 2012; 809():149-56. PubMed ID: 22113274
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ChIP-chip to analyze the binding of replication proteins to chromatin using oligonucleotide DNA microarrays.
    Viggiani CJ; Aparicio JG; Aparicio OM
    Methods Mol Biol; 2009; 521():255-78. PubMed ID: 19563111
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interactions between Fkh1 monomers stabilize its binding to DNA replication origins.
    Reinapae A; Ilves I; Jürgens H; Värv S; Kristjuhan K; Kristjuhan A
    J Biol Chem; 2023 Aug; 299(8):105026. PubMed ID: 37423303
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conversion of a replication origin to a silencer through a pathway shared by a Forkhead transcription factor and an S phase cyclin.
    Casey L; Patterson EE; Müller U; Fox CA
    Mol Biol Cell; 2008 Feb; 19(2):608-22. PubMed ID: 18045995
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Normalization of ChIP-seq data with control.
    Liang K; Keleş S
    BMC Bioinformatics; 2012 Aug; 13():199. PubMed ID: 22883957
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative BrdU immunoprecipitation method demonstrates that Fkh1 and Fkh2 are rate-limiting activators of replication origins that reprogram replication timing in G1 phase.
    Peace JM; Villwock SK; Zeytounian JL; Gan Y; Aparicio OM
    Genome Res; 2016 Mar; 26(3):365-75. PubMed ID: 26728715
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of the Nucleolar Localization of the RENT Complex to Ribosomal DNA by Chromatin Immunoprecipitation Assays.
    Huang J; Iglesias N; Moazed D
    Methods Mol Biol; 2017; 1505():195-213. PubMed ID: 27826866
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome-wide measurement of protein-DNA binding dynamics using competition ChIP.
    Lickwar CR; Mueller F; Lieb JD
    Nat Protoc; 2013; 8(7):1337-53. PubMed ID: 23764940
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome-wide analysis of functional sirtuin chromatin targets in yeast.
    Li M; Valsakumar V; Poorey K; Bekiranov S; Smith JS
    Genome Biol; 2013 May; 14(5):R48. PubMed ID: 23710766
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ChIP-Seq using high-throughput DNA sequencing for genome-wide identification of transcription factor binding sites.
    Lefrançois P; Zheng W; Snyder M
    Methods Enzymol; 2010; 470():77-104. PubMed ID: 20946807
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.