These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
294 related articles for article (PubMed ID: 37298256)
21. Discovery of anti-malarial agents through application of in silico studies. Barmade MA; Murumkar PR; Sharma MK; Shingala KP; Giridhar RR; Yadav MR Comb Chem High Throughput Screen; 2015; 18(2):151-87. PubMed ID: 25543680 [TBL] [Abstract][Full Text] [Related]
22. Discovery of selective dengue virus inhibitors using combination of molecular fingerprint-based virtual screening protocols, structure-based pharmacophore model development, molecular dynamics simulations and in vitro studies. Mirza SB; Lee RCH; Chu JJH; Salmas RE; Mavromoustakos T; Durdagi S J Mol Graph Model; 2018 Jan; 79():88-102. PubMed ID: 29156382 [TBL] [Abstract][Full Text] [Related]
23. Bisbenzylisoquinolines from Cissampelos pareira L. as antimalarial agents: Molecular docking, pharmacokinetics analysis, and molecular dynamic simulation studies. Suresh PS; Kesarwani V; Kumari S; Shankar R; Sharma U Comput Biol Chem; 2023 Jun; 104():107826. PubMed ID: 36848855 [TBL] [Abstract][Full Text] [Related]
24. Advancements in Docking and Molecular Dynamics Simulations Towards Ligand-receptor Interactions and Structure-function Relationships. Naqvi AAT; Mohammad T; Hasan GM; Hassan MI Curr Top Med Chem; 2018; 18(20):1755-1768. PubMed ID: 30360721 [TBL] [Abstract][Full Text] [Related]
25. QSAR, docking and ADMET studies of artemisinin derivatives for antimalarial activity targeting plasmepsin II, a hemoglobin-degrading enzyme from P. falciparum. Qidwai T; Yadav DK; Khan F; Dhawan S; Bhakuni RS Curr Pharm Des; 2012; 18(37):6133-54. PubMed ID: 22670592 [TBL] [Abstract][Full Text] [Related]
26. Structural Investigation of Vinca Domain Tubulin Binders by Pharmacophore, Atom based QSAR, Docking and Molecular Dynamics Simulations. Athar M; Lone MY; Khedkar VM; Radadiya A; Shah A; Jha PC Comb Chem High Throughput Screen; 2017; 20(8):682-695. PubMed ID: 28486912 [TBL] [Abstract][Full Text] [Related]
27. Pyrazole based Furanone Hybrids as Novel Antimalarial: A Combined Experimental, Pharmacological and Computational Study. Choudhary D; Rani I; Monga J; Goyal R; Husain A; Garg P; Khokra SL Cent Nerv Syst Agents Med Chem; 2022; 22(1):39-56. PubMed ID: 35232355 [TBL] [Abstract][Full Text] [Related]
28. In Silico Studies Most Employed in the Discovery of New Antimicrobial Agents. Tamay-Cach F; Villa-Tanaca ML; Trujillo-Ferrara JG; Alemán-González-Duhart D; Quintana-Pérez JC; González-Ramírez IA; Correa-Basurto J Curr Med Chem; 2016; 23(29):3360-3373. PubMed ID: 26860996 [TBL] [Abstract][Full Text] [Related]
29. Performing an In Silico Repurposing of Existing Drugs by Combining Virtual Screening and Molecular Dynamics Simulation. Sohraby F; Bagheri M; Aryapour H Methods Mol Biol; 2019; 1903():23-43. PubMed ID: 30547434 [TBL] [Abstract][Full Text] [Related]
30. A Review on Applications of Computational Methods in Drug Screening and Design. Lin X; Li X; Lin X Molecules; 2020 Mar; 25(6):. PubMed ID: 32197324 [TBL] [Abstract][Full Text] [Related]
31. An Overview of Available Antimalarials: Discovery, Mode of Action and Drug Resistance. Tang YQ; Ye Q; Huang H; Zheng WY Curr Mol Med; 2020; 20(8):583-592. PubMed ID: 32031068 [TBL] [Abstract][Full Text] [Related]
32. Advances in quantitative structure-activity relationship models of antimalarials. Roy K; Ojha PK Expert Opin Drug Discov; 2010 Aug; 5(8):751-78. PubMed ID: 22827798 [TBL] [Abstract][Full Text] [Related]
33. A review on diverse heterocyclic compounds as the privileged scaffolds in antimalarial drug discovery. Kalaria PN; Karad SC; Raval DK Eur J Med Chem; 2018 Oct; 158():917-936. PubMed ID: 30261467 [TBL] [Abstract][Full Text] [Related]
34. Application of chemometrics and cheminformatics in antimalarial drug research. Roy K Comb Chem High Throughput Screen; 2015; 18(2):89-90. PubMed ID: 25692659 [No Abstract] [Full Text] [Related]
35. Efforts Aimed To Reduce Attrition in Antimalarial Drug Discovery: A Systematic Evaluation of the Current Antimalarial Targets Portfolio. Chaparro MJ; Calderón F; Castañeda P; Fernández-Alvaro E; Gabarró R; Gamo FJ; Gómez-Lorenzo MG; Martín J; Fernández E ACS Infect Dis; 2018 Apr; 4(4):568-576. PubMed ID: 29320160 [TBL] [Abstract][Full Text] [Related]
36. In silico study of M18 aspartyl amino peptidase (M18AAP) of Plasmodium vivax as an antimalarial drug target. Rout S; Mahapatra RK Bioorg Med Chem; 2019 Jun; 27(12):2553-2571. PubMed ID: 30929948 [TBL] [Abstract][Full Text] [Related]
37. Application of Multiscale Simulation Tools on GPCRs. An Example with Angiotensin II Type 1 Receptor. Erol I; Aksoydan B; Kantarcioglu I; Durdagi S Methods Mol Biol; 2018; 1824():431-448. PubMed ID: 30039423 [TBL] [Abstract][Full Text] [Related]
38. Editorial: Current status and perspective on drug targets in tubercle bacilli and drug design of antituberculous agents based on structure-activity relationship. Tomioka H Curr Pharm Des; 2014; 20(27):4305-6. PubMed ID: 24245755 [TBL] [Abstract][Full Text] [Related]
39. Use of QSAR Global Models and Molecular Docking for Developing New Inhibitors of c-src Tyrosine Kinase. Ancuceanu R; Tamba B; Stoicescu CS; Dinu M Int J Mol Sci; 2019 Dec; 21(1):. PubMed ID: 31861445 [TBL] [Abstract][Full Text] [Related]
40. Drug discovery studies on quinoline-based derivatives as potential antimalarial agents. Sharma R; Patil S; Maurya P SAR QSAR Environ Res; 2014; 25(3):189-203. PubMed ID: 24601770 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]