These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

306 related articles for article (PubMed ID: 37298454)

  • 1. Does EGFR Signaling Mediate Orexin System Activity in Sleep Initiation?
    Kniazkina M; Dyachuk V
    Int J Mol Sci; 2023 May; 24(11):. PubMed ID: 37298454
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A mathematical model of the sleep/wake cycle.
    Rempe MJ; Best J; Terman D
    J Math Biol; 2010 May; 60(5):615-44. PubMed ID: 19557415
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hypothalamic regulation of the sleep/wake cycle.
    Ono D; Yamanaka A
    Neurosci Res; 2017 May; 118():74-81. PubMed ID: 28526553
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Understanding zebrafish sleep and wakefulness physiology as an experimental model for biomedical research.
    Singh R; Sharma D; Kumar A; Singh C; Singh A
    Fish Physiol Biochem; 2024 Apr; 50(2):827-842. PubMed ID: 38150068
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Respiration and autonomic regulation and orexin.
    Nattie E; Li A
    Prog Brain Res; 2012; 198():25-46. PubMed ID: 22813968
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Homeostatic, circadian, and emotional regulation of sleep.
    Saper CB; Cano G; Scammell TE
    J Comp Neurol; 2005 Dec; 493(1):92-8. PubMed ID: 16254994
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Circadian clocks, rhythmic synaptic plasticity and the sleep-wake cycle in zebrafish.
    Elbaz I; Foulkes NS; Gothilf Y; Appelbaum L
    Front Neural Circuits; 2013; 7():9. PubMed ID: 23378829
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Potential role of orexin and sleep modulation in the pathogenesis of Alzheimer's disease.
    Roh JH; Jiang H; Finn MB; Stewart FR; Mahan TE; Cirrito JR; Heda A; Snider BJ; Li M; Yanagisawa M; de Lecea L; Holtzman DM
    J Exp Med; 2014 Dec; 211(13):2487-96. PubMed ID: 25422493
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Suprachiasmatic nucleus in sleep-wake regulation.
    Moore RY
    Sleep Med; 2007 Dec; 8 Suppl 3():27-33. PubMed ID: 18032104
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The roles of orexins in sleep/wake regulation.
    Mieda M
    Neurosci Res; 2017 May; 118():56-65. PubMed ID: 28526554
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The neurobiological underpinning of the circadian wake signal.
    Zeitzer JM
    Biochem Pharmacol; 2021 Sep; 191():114386. PubMed ID: 33359009
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Restoring the Molecular Clockwork within the Suprachiasmatic Hypothalamus of an Otherwise Clockless Mouse Enables Circadian Phasing and Stabilization of Sleep-Wake Cycles and Reverses Memory Deficits.
    Maywood ES; Chesham JE; Winsky-Sommerer R; Hastings MH
    J Neurosci; 2021 Oct; 41(41):8562-8576. PubMed ID: 34446572
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Selective stimulations and lesions of the rat brain nuclei as the models for research of the human sleep pathology mechanisms].
    Šaponjić J
    Glas Srp Akad Nauka Med; 2011; (51):85-97. PubMed ID: 22165729
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increased orexin expression promotes sleep/wake disturbances in the SOD1-G93A mouse model of amyotrophic lateral sclerosis.
    Liu R; Sheng ZF; Cai B; Zhang YH; Fan DS
    Chin Med J (Engl); 2015 Jan; 128(2):239-44. PubMed ID: 25591569
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fos expression in orexin neurons varies with behavioral state.
    Estabrooke IV; McCarthy MT; Ko E; Chou TC; Chemelli RM; Yanagisawa M; Saper CB; Scammell TE
    J Neurosci; 2001 Mar; 21(5):1656-62. PubMed ID: 11222656
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hypocretin and its emerging role as a target for treatment of sleep disorders.
    Cao M; Guilleminault C
    Curr Neurol Neurosci Rep; 2011 Apr; 11(2):227-34. PubMed ID: 21170610
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluctuation of extracellular hypocretin-1 (orexin A) levels in the rat in relation to the light-dark cycle and sleep-wake activities.
    Yoshida Y; Fujiki N; Nakajima T; Ripley B; Matsumura H; Yoneda H; Mignot E; Nishino S
    Eur J Neurosci; 2001 Oct; 14(7):1075-81. PubMed ID: 11683899
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sleep Physiology, Circadian Rhythms, Waking Performance and the Development of Sleep-Wake Therapeutics.
    Dijk DJ; Landolt HP
    Handb Exp Pharmacol; 2019; 253():441-481. PubMed ID: 31254050
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hypocretin/Orexin Receptor Pharmacology and Sleep Phases.
    Sun Y; Tisdale RK; Kilduff TS
    Front Neurol Neurosci; 2021; 45():22-37. PubMed ID: 34052813
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Brain structures and receptors involved in alertness.
    Aston-Jones G
    Sleep Med; 2005 Jun; 6 Suppl 1():S3-7. PubMed ID: 16140243
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.