BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 37298583)

  • 1. Deficiency of
    Chen X; Li N; Hu P; Li L; Li D; Liu H; Zhu L; Xiao J; Liu C
    Int J Mol Sci; 2023 Jun; 24(11):. PubMed ID: 37298583
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inactivation of Fam20b in the neural crest-derived mesenchyme of mouse causes multiple craniofacial defects.
    Liu X; Li N; Zhang H; Liu J; Zhou N; Ran C; Chen X; Lu Y; Wang X; Qin C; Xiao J; Liu C
    Eur J Oral Sci; 2018 Oct; 126(5):433-436. PubMed ID: 30105814
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Requirement of Hyaluronan Synthase-2 in Craniofacial and Palate Development.
    Lan Y; Qin C; Jiang R
    J Dent Res; 2019 Nov; 98(12):1367-1375. PubMed ID: 31509714
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neural crest-specific deletion of Ldb1 leads to cleft secondary palate with impaired palatal shelf elevation.
    Almaidhan A; Cesario J; Landin Malt A; Zhao Y; Sharma N; Choi V; Jeong J
    BMC Dev Biol; 2014 Jan; 14():3. PubMed ID: 24433583
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mice with Tak1 deficiency in neural crest lineage exhibit cleft palate associated with abnormal tongue development.
    Song Z; Liu C; Iwata J; Gu S; Suzuki A; Sun C; He W; Shu R; Li L; Chai Y; Chen Y
    J Biol Chem; 2013 Apr; 288(15):10440-50. PubMed ID: 23460641
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tissue-specific analysis of Fgf18 gene function in palate development.
    Yue M; Lan Y; Liu H; Wu Z; Imamura T; Jiang R
    Dev Dyn; 2021 Apr; 250(4):562-573. PubMed ID: 33034111
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Type 1 fibroblast growth factor receptor in cranial neural crest cell-derived mesenchyme is required for palatogenesis.
    Wang C; Chang JY; Yang C; Huang Y; Liu J; You P; McKeehan WL; Wang F; Li X
    J Biol Chem; 2013 Jul; 288(30):22174-83. PubMed ID: 23754280
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Altered BMP-Smad4 signaling causes complete cleft palate by disturbing osteogenesis in palatal mesenchyme.
    Li N; Liu J; Liu H; Wang S; Hu P; Zhou H; Xiao J; Liu C
    J Mol Histol; 2021 Feb; 52(1):45-61. PubMed ID: 33159638
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Disruption of the ERK/MAPK pathway in neural crest cells as a potential cause of Pierre Robin sequence.
    Parada C; Han D; Grimaldi A; Sarrión P; Park SS; Pelikan R; Sanchez-Lara PA; Chai Y
    Development; 2015 Nov; 142(21):3734-45. PubMed ID: 26395480
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conditional deletion of Bmp2 in cranial neural crest cells recapitulates Pierre Robin sequence in mice.
    Chen Y; Wang Z; Chen Y; Zhang Y
    Cell Tissue Res; 2019 May; 376(2):199-210. PubMed ID: 30413887
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inactivation of Fam20B in the dental epithelium of mice leads to supernumerary incisors.
    Tian Y; Ma P; Liu C; Yang X; Crawford DM; Yan W; Bai D; Qin C; Wang X
    Eur J Oral Sci; 2015 Dec; 123(6):396-402. PubMed ID: 26465965
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of the histone methyltransferase SET domain bifurcated 1 during palatal development.
    Kano S; Higashihori N; Thiha P; Takechi M; Iseki S; Moriyama K
    Biochem Biophys Res Commun; 2022 Apr; 598():74-80. PubMed ID: 35151207
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inactivation of Fam20B in Joint Cartilage Leads to Chondrosarcoma and Postnatal Ossification Defects.
    Ma P; Yan W; Tian Y; Wang J; Feng JQ; Qin C; Cheng YS; Wang X
    Sci Rep; 2016 Jul; 6():29814. PubMed ID: 27405802
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fibroblast growth factor 9 (FGF9)-pituitary homeobox 2 (PITX2) pathway mediates transforming growth factor β (TGFβ) signaling to regulate cell proliferation in palatal mesenchyme during mouse palatogenesis.
    Iwata J; Tung L; Urata M; Hacia JG; Pelikan R; Suzuki A; Ramenzoni L; Chaudhry O; Parada C; Sanchez-Lara PA; Chai Y
    J Biol Chem; 2012 Jan; 287(4):2353-63. PubMed ID: 22123828
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intraflagellar transport 88 (IFT88) is crucial for craniofacial development in mice and is a candidate gene for human cleft lip and palate.
    Tian H; Feng J; Li J; Ho TV; Yuan Y; Liu Y; Brindopke F; Figueiredo JC; Magee W; Sanchez-Lara PA; Chai Y
    Hum Mol Genet; 2017 Mar; 26(5):860-872. PubMed ID: 28069795
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rescue of cleft palate in Msx1-deficient mice by transgenic Bmp4 reveals a network of BMP and Shh signaling in the regulation of mammalian palatogenesis.
    Zhang Z; Song Y; Zhao X; Zhang X; Fermin C; Chen Y
    Development; 2002 Sep; 129(17):4135-46. PubMed ID: 12163415
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modulating Wnt Signaling Rescues Palate Morphogenesis in Pax9 Mutant Mice.
    Li C; Lan Y; Krumlauf R; Jiang R
    J Dent Res; 2017 Oct; 96(11):1273-1281. PubMed ID: 28692808
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cranial neural crest deletion of VEGFa causes cleft palate with aberrant vascular and bone development.
    Hill C; Jacobs B; Kennedy L; Rohde S; Zhou B; Baldwin S; Goudy S
    Cell Tissue Res; 2015 Sep; 361(3):711-22. PubMed ID: 25759071
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The transcriptional regulator MEIS2 sets up the ground state for palatal osteogenesis in mice.
    Wang L; Tang Q; Xu J; Li H; Yang T; Li L; Machon O; Hu T; Chen Y
    J Biol Chem; 2020 Apr; 295(16):5449-5460. PubMed ID: 32169905
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ablation of the Sox11 Gene Results in Clefting of the Secondary Palate Resembling the Pierre Robin Sequence.
    Huang H; Yang X; Bao M; Cao H; Miao X; Zhang X; Gan L; Qiu M; Zhang Z
    J Biol Chem; 2016 Mar; 291(13):7107-18. PubMed ID: 26826126
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.