These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 37298876)

  • 41. Three-Dimensional BiOI/BiOX (X = Cl or Br) Nanohybrids for Enhanced Visible-Light Photocatalytic Activity.
    Liu Y; Xu J; Wang L; Zhang H; Xu P; Duan X; Sun H; Wang S
    Nanomaterials (Basel); 2017 Mar; 7(3):. PubMed ID: 28336897
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Role of p-n junction initiated mixed-dimensional 0D/2D, 1D/2D, and 2D/2D BiOX (X = Cl, Br, and I)/TiO
    Sreedhar A; Hoai Ta QT; Noh JS
    Chemosphere; 2022 Oct; 305():135478. PubMed ID: 35760130
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Synergistic effect of internal electric field and oxygen vacancy on the photocatalytic activity of BiOBr
    Ren X; Li J; Cao X; Wang B; Zhang Y; Wei Y
    J Colloid Interface Sci; 2019 Oct; 554():500-511. PubMed ID: 31326783
    [TBL] [Abstract][Full Text] [Related]  

  • 44. An enhanced photo(electro)catalytic CO
    Mora-Hernandez JM; Alfonso Herrera LA; Garay-Rodriguez LF; Torres-Martínez LM; Hernandez-Perez I
    Heliyon; 2023 Oct; 9(10):e20605. PubMed ID: 37842589
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effective Charge Carrier Utilization in Photocatalytic Conversions.
    Zhang P; Wang T; Chang X; Gong J
    Acc Chem Res; 2016 May; 49(5):911-21. PubMed ID: 27075166
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Photocatalytic Enhancement Strategy with the Introduction of Metallic Bi: A Review on Bi/Semiconductor Photocatalysts.
    Song Y; Bao Z; Gu Y
    Chem Rec; 2024 Mar; 24(3):e202300307. PubMed ID: 38084448
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Synthesis of BiOX-Red Mud/Granulated Blast Furnace Slag Geopolymer Microspheres for Photocatalytic Degradation of Formaldehyde.
    Lu P; Zhang N; Wang Y; Wang Y; Zhang J; Cai Q; Zhang Y
    Materials (Basel); 2024 Mar; 17(7):. PubMed ID: 38612099
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Covalent Organic Framework-Semiconductor-Based Heterostructures for Photocatalytic Applications.
    Chen K; Cai A; Li TT
    ChemSusChem; 2023 May; 16(10):e202300021. PubMed ID: 36799094
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Hetero-Motif Molecular Junction Photocatalysts: A New Frontier in Artificial Photosynthesis.
    Zhang L; Liu J; Lan YQ
    Acc Chem Res; 2024 Mar; 57(6):870-883. PubMed ID: 38424009
    [TBL] [Abstract][Full Text] [Related]  

  • 50. DFT calculations on the electronic structures of BiOX (X = F, Cl, Br, I) photocatalysts with and without semicore Bi 5d states.
    Huang WL; Zhu Q
    J Comput Chem; 2009 Jan; 30(2):183-90. PubMed ID: 18566979
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A Convenient Procedure for Preparing BiOX-TiO
    Fu MY; Wang HY; Zhai HL; Zhu QY; Dai J
    Inorg Chem; 2022 Mar; 61(9):4024-4032. PubMed ID: 35179867
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Indirect Substitution Constructing Halogen-Vacancy BiOCl
    Wang J; Mei H; Jin D; Lin Q; Zhang R; Wang X
    Inorg Chem; 2022 Jun; 61(22):8540-8549. PubMed ID: 35603717
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Dipole Moment and Built-In Polarization Electric Field Induced by Oxygen Vacancies in BiOX for Boosting Piezoelectric-Photocatalytic Removal of Uranium(VI).
    Gao D; Dong Z; Feng W; Li Z; Wu H; Wu Y; Wei Q; Meng C; Wu Y; Wang Y; Xu L; Cao X; Zhang Z; Liu Y
    Inorg Chem; 2024 Apr; 63(13):5931-5944. PubMed ID: 38490189
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Highly efficient solar light-driven BiOX (X=Br/Cl/I) and BiOY heterojunction (Y=Br/Cl) nano photocatalysts in suspended and immobilised forms for malachite green dye wastewater treatment.
    Mishra S; Mandhan M; Mahalingam H
    Environ Sci Pollut Res Int; 2023 Feb; 30(10):25402-25416. PubMed ID: 34813017
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A review on TiO
    Wang J; Guo RT; Bi ZX; Chen X; Hu X; Pan WG
    Nanoscale; 2022 Aug; 14(32):11512-11528. PubMed ID: 35917276
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Ternary alloyed AgCl(x)Br(1-x) nanocrystals: facile modulation of electronic structures toward advanced photocatalytic performance.
    Cai B; Wang J; Han D; Gan S; Zhang Q; Wu Z; Niu L
    Nanoscale; 2013 Nov; 5(22):10989-95. PubMed ID: 24065184
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Semiconductor-based nanocomposites for photocatalytic H2 production and CO2 conversion.
    Fan W; Zhang Q; Wang Y
    Phys Chem Chem Phys; 2013 Feb; 15(8):2632-49. PubMed ID: 23322026
    [TBL] [Abstract][Full Text] [Related]  

  • 58. New understanding of the difference of photocatalytic activity among anatase, rutile and brookite TiO2.
    Zhang J; Zhou P; Liu J; Yu J
    Phys Chem Chem Phys; 2014 Oct; 16(38):20382-6. PubMed ID: 25144471
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The role of effective mass of carrier in the photocatalytic behavior of silver halide-based Ag@AgX (X=Cl, Br, I): a theoretical study.
    Ma X; Dai Y; Guo M; Huang B
    Chemphyschem; 2012 Jun; 13(9):2304-9. PubMed ID: 22517725
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Capturing Metastable Oxide Semiconductors for Applications in Solar Energy Conversion.
    Maggard PA
    Acc Chem Res; 2021 Aug; ():. PubMed ID: 34347430
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.