These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 37298920)

  • 1. Comparative Study of Polymer-Grafted BaTiO
    Apata IE; Tawade BV; Cummings SP; Pradhan N; Karim A; Raghavan D
    Molecules; 2023 May; 28(11):. PubMed ID: 37298920
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface-Induced ARGET ATRP for Silicon Nanoparticles with Fluorescent Polymer Brushes.
    Yan CN; Xu L; Liu QD; Zhang W; Jia R; Liu CZ; Wang SS; Wang LP; Li G
    Polymers (Basel); 2019 Jul; 11(7):. PubMed ID: 31340523
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aqueous-based initiator attachment and ATRP grafting of polymer brushes from poly(methyl methacrylate) substrates.
    Balamurugan SS; Subramanian B; Bolivar JG; McCarley RL
    Langmuir; 2012 Oct; 28(40):14254-60. PubMed ID: 22967226
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation of poly(methyl methacrylate) grafted hydroxyapatite nanoparticles via reverse ATRP.
    Wang Y; Xiao Y; Huang X; Lang M
    J Colloid Interface Sci; 2011 Aug; 360(2):415-21. PubMed ID: 21601216
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ARGET ATRP for versatile grafting of cellulose using various monomers.
    Hansson S; Ostmark E; Carlmark A; Malmström E
    ACS Appl Mater Interfaces; 2009 Nov; 1(11):2651-9. PubMed ID: 20356139
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface-initiated atom transfer radical polymerization of methyl methacrylate from magnetite nanoparticles at ambient temperature.
    Raghuraman GK; Dhamodharan R
    J Nanosci Nanotechnol; 2006 Jul; 6(7):2018-24. PubMed ID: 17025118
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparative study on grafting polymers from cellulose nanocrystals via surface-initiated atom transfer radical polymerization (ATRP) and activator re-generated by electron transfer ATRP.
    Zhang Z; Wang X; Tam KC; Sèbe G
    Carbohydr Polym; 2019 Feb; 205():322-329. PubMed ID: 30446111
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface Modification of Wood Flour via ARGET ATRP and Its Application as Filler in Thermoplastics.
    Kaßel M; Gerke J; Ley A; Vana P
    Polymers (Basel); 2018 Mar; 10(4):. PubMed ID: 30966389
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancing Initiation Efficiency in Metal-Free Surface-Initiated Atom Transfer Radical Polymerization (SI-ATRP).
    Yan J; Pan X; Schmitt M; Wang Z; Bockstaller MR; Matyjaszewski K
    ACS Macro Lett; 2016 Jun; 5(6):661-665. PubMed ID: 35614657
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Control of Dispersity and Grafting Density of Particle Brushes by Variation of ATRP Catalyst Concentration.
    Wang Z; Yan J; Liu T; Wei Q; Li S; Olszewski M; Wu J; Sobieski J; Fantin M; Bockstaller MR; Matyjaszewski K
    ACS Macro Lett; 2019 Jul; 8(7):859-864. PubMed ID: 35619513
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication of contrast agents for magnetic resonance imaging from polymer-brush-afforded iron oxide magnetic nanoparticles prepared by surface-initiated living radical polymerization.
    Ohno K; Mori C; Akashi T; Yoshida S; Tago Y; Tsujii Y; Tabata Y
    Biomacromolecules; 2013 Oct; 14(10):3453-62. PubMed ID: 23957585
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of Polymer Grafted Magnetite Nanoparticle with the Highest Grafting Density via Controlled Radical Polymerization.
    Babu K; Dhamodharan R
    Nanoscale Res Lett; 2009 Jun; 4(9):1090-102. PubMed ID: 20596283
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of ATRP initiator spacer length on grafting poly(methyl methacrylate) from silica nanoparticles.
    Huang C; Tassone T; Woodberry K; Sunday D; Green DL
    Langmuir; 2009 Dec; 25(23):13351-60. PubMed ID: 19874039
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Silica-polymethacrylate hybrid particles synthesized using high-pressure atom transfer radical polymerization.
    Pietrasik J; Hui CM; Chaladaj W; Dong H; Choi J; Jurczak J; Bockstaller MR; Matyjaszewski K
    Macromol Rapid Commun; 2011 Feb; 32(3):295-301. PubMed ID: 21433174
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Magneto-responsive organogels prepared through surface-initiated atom transfer radical polymerization on iron nanoparticles.
    Czaun M; Hevesi L; Takafuji M; Ihara H
    J Nanosci Nanotechnol; 2009 Jan; 9(1):123-31. PubMed ID: 19441286
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface-initiated ATRP of PMMA, PS and diblock PS-b-PMMA copolymers from stainless steel modified by 11-(2-bromoisobutyrate)-undecyl-1-phosphonic acid.
    Minet I; Delhalle J; Hevesi L; Mekhalif Z
    J Colloid Interface Sci; 2009 Apr; 332(2):317-26. PubMed ID: 19168187
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis of iron oxide rods coated with polymer brushes and control of their assembly in thin films.
    Huang Y; Ishige R; Tsujii Y; Ohno K
    Langmuir; 2015 Jan; 31(3):1172-9. PubMed ID: 25552325
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Catenated PS-PMMA block copolymers via supramolecularly templated ATRP initiator approach.
    Bunha AK; Mangadlao J; Felipe MJ; Pangilinan K; Advincula R
    Macromol Rapid Commun; 2012 Jul; 33(14):1214-9. PubMed ID: 22605483
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Facile surface immobilization of ATRP initiators on colloidal polymers for grafting brushes and application to colloidal crystals.
    Liu YY; Chen H; Ishizu K
    Langmuir; 2011 Feb; 27(3):1168-74. PubMed ID: 21214212
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein immobilization onto poly(acrylic acid) functional macroporous polyHIPE obtained by surface-initiated ARGET ATRP.
    Audouin F; Larragy R; Fox M; O'Connor B; Heise A
    Biomacromolecules; 2012 Nov; 13(11):3787-94. PubMed ID: 23077969
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.