BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 37299238)

  • 1. Spectrophotometric-Based Assay to Quantify Relative Enzyme-Mediated Degradation of Commercially Available Bioplastics.
    Hoekstra M; Smith ML
    Polymers (Basel); 2023 May; 15(11):. PubMed ID: 37299238
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Actinobacteria as Promising Candidate for Polylactic Acid Type Bioplastic Degradation.
    Butbunchu N; Pathom-Aree W
    Front Microbiol; 2019; 10():2834. PubMed ID: 31921021
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influences of bioplastic polylactic acid on near-infrared-based sorting of conventional plastic.
    Chen X; Kroell N; Li K; Feil A; Pretz T
    Waste Manag Res; 2021 Sep; 39(9):1210-1213. PubMed ID: 33832373
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification and Quantification of Micro-Bioplastics in Environmental Samples by Pyrolysis-Gas Chromatography-Mass Spectrometry.
    Okoffo ED; Chan CM; Rauert C; Kaserzon S; Thomas KV
    Environ Sci Technol; 2022 Oct; 56(19):13774-13785. PubMed ID: 36128767
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Superior sequence-controlled poly(L-lactide)-based bioplastic with tunable seawater biodegradation.
    He M; Hsu YI; Uyama H
    J Hazard Mater; 2024 Aug; 474():134819. PubMed ID: 38850940
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineered yeast for the efficient hydrolysis of polylactic acid.
    Myburgh MW; Favaro L; van Zyl WH; Viljoen-Bloom M
    Bioresour Technol; 2023 Jun; 378():129008. PubMed ID: 37011843
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of liquid-based colorimetric method for high throughput screening of bioplastic-degrading strains using esterase assay.
    Kim SH; Shin N; Jeon JM; Yoon JJ; Joo JC; Kim HT; Bhatia SK; Yang YH
    Anal Biochem; 2024 Jan; 685():115390. PubMed ID: 37951454
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antibiotic resistance genes proliferation under anaerobic degradation of polylactic acid and polyhydroxy butyrate bioplastics.
    Haffiez N; Zakaria BS; Mohammad Mirsoleimani Azizi S; Ranjan Dhar B
    Environ Int; 2023 May; 175():107938. PubMed ID: 37120980
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Potential effects of biodegradable single-use items in the sea: Polylactic acid (PLA) and solitary ascidians.
    Anderson G; Shenkar N
    Environ Pollut; 2021 Jan; 268(Pt A):115364. PubMed ID: 33152630
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simultaneous monitoring of each component on degradation of blended bioplastic using gas chromatography-mass spectrometry.
    Cho JY; Kim SH; Cho DH; Jung HJ; Kim BC; Bhatia SK; Gurav R; Lee J; Park SH; Park K; Joo HS; Yang YH
    Anal Biochem; 2022 Oct; 655():114832. PubMed ID: 35948058
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Macroalgae Bioplastics: A Sustainable Shift to Mitigate the Ecological Impact of Petroleum-Based Plastics.
    Elkaliny NE; Alzamel NM; Moussa SH; Elodamy NI; Madkor EA; Ibrahim EM; Elshobary ME; Ismail GA
    Polymers (Basel); 2024 Apr; 16(9):. PubMed ID: 38732716
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel Poly(butylene adipate-co-terephthalate)-degrading Bacillus sp. JY35 from wastewater sludge and its broad degradation of various bioplastics.
    Cho JY; Park SL; Kim SH; Jung HJ; Cho DH; Kim BC; Bhatia SK; Gurav R; Park SH; Park K; Yang YH
    Waste Manag; 2022 May; 144():1-10. PubMed ID: 35286847
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fate of petroleum-based and plant-based teabags exposed to environmental soil conditions for one year.
    Mateos-Cárdenas A
    Front Bioeng Biotechnol; 2022; 10():966685. PubMed ID: 36147529
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enzymatic hydrolysis of single-use bioplastic items by improved recombinant yeast strains.
    Myburgh MW; van Zyl WH; Modesti M; Viljoen-Bloom M; Favaro L
    Bioresour Technol; 2023 Dec; 390():129908. PubMed ID: 37866766
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enzymatic Degradation of the Most Common Aliphatic Bio-Polyesters and Evaluation of the Mechanisms Involved: An Extended Study.
    Rosato A; Romano A; Totaro G; Celli A; Fava F; Zanaroli G; Sisti L
    Polymers (Basel); 2022 Apr; 14(9):. PubMed ID: 35567020
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioplastic degradation by a polyhydroxybutyrate depolymerase from a thermophilic soil bacterium.
    Thomas GM; Quirk S; Huard DJE; Lieberman RL
    Protein Sci; 2022 Nov; 31(11):e4470. PubMed ID: 36222314
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inspired by nature: Microbial production, degradation and valorization of biodegradable bioplastics for life-cycle-engineered products.
    García-Depraect O; Bordel S; Lebrero R; Santos-Beneit F; Börner RA; Börner T; Muñoz R
    Biotechnol Adv; 2021 Dec; 53():107772. PubMed ID: 34015389
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Environmental impact of bioplastic use: A review.
    Atiwesh G; Mikhael A; Parrish CC; Banoub J; Le TT
    Heliyon; 2021 Sep; 7(9):e07918. PubMed ID: 34522811
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Advances in microbial exoenzymes bioengineering for improvement of bioplastics degradation.
    Rahmati F; Sethi D; Shu W; Asgari Lajayer B; Mosaferi M; Thomson A; Price GW
    Chemosphere; 2024 May; 355():141749. PubMed ID: 38521099
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Degradation of starch-based bioplastic bags in the pelagic and benthic zones of the Gulf of Oman.
    Abed RMM; Al-Hinai M; Al-Balushi Y; Haider L; Muthukrishnan T; Rinner U
    Mar Pollut Bull; 2023 Oct; 195():115496. PubMed ID: 37703633
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.