BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 3729951)

  • 21. Nuclear magnetic resonance studies on calmodulin: calcium-induced conformational change.
    Ikura M; Hiraoki T; Hikichi K; Mikuni T; Yazawa M; Yagi K
    Biochemistry; 1983 May; 22(10):2573-9. PubMed ID: 6683101
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Quantification of protein-protein interactions with chemical cross-linking and mass spectrometry.
    Chavez JD; Liu NL; Bruce JE
    J Proteome Res; 2011 Apr; 10(4):1528-37. PubMed ID: 21222489
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A compact intermediate state of calmodulin in the process of target binding.
    Yamada Y; Matsuo T; Iwamoto H; Yagi N
    Biochemistry; 2012 May; 51(19):3963-70. PubMed ID: 22548417
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Thermodynamics of target peptide recognition by calmodulin and a calmodulin analogue: implications for the role of the central linker.
    Moorthy AK; Gopal B; Satish PR; Bhattacharya S; Bhattacharya A; Murthy MR; Surolia A
    FEBS Lett; 1999 Nov; 461(1-2):19-24. PubMed ID: 10561489
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The interaction of melittin with calmodulin and its tryptic fragments.
    Steiner RF; Marshall L; Needleman D
    Arch Biochem Biophys; 1986 Apr; 246(1):286-300. PubMed ID: 3963824
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mastoparan, a wasp venom peptide, identifies two discrete mechanisms for elevating cytosolic calcium and inositol trisphosphates in human polymorphonuclear leukocytes.
    Perianin A; Snyderman R
    J Immunol; 1989 Sep; 143(5):1669-73. PubMed ID: 2760463
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Studies on peptides. XCVIII. Synthesis of a wasp venom, Polistes mastoparan.
    Yajima H; Fujii N; Hirota Y; Nasada Y; Hirai Y; Nakajima T
    Int J Pept Protein Res; 1980 Nov; 16(5):426-32. PubMed ID: 7216617
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A joint 2D NMR and theoretical investigation of Ca2+ binding loops III and IV of calmodulin.
    Gresh N; Guittet E; Lallemand JY
    J Biomol Struct Dyn; 1990 Apr; 7(5):1003-18. PubMed ID: 2360994
    [TBL] [Abstract][Full Text] [Related]  

  • 29. 1H-NMR studies of calmodulin. The nature of the Ca2+-dependent conformational change.
    Klevit RE; Dalgarno DC; Levine BA; Williams RJ
    Eur J Biochem; 1984 Feb; 139(1):109-14. PubMed ID: 6697998
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mastoparan binds to glycogen phosphorylase to regulate sarcoplasmic reticular Ca2+ release in skeletal muscle.
    Hirata Y; Atsumi M; Ohizumi Y; Nakahata N
    Biochem J; 2003 Apr; 371(Pt 1):81-8. PubMed ID: 12519071
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Inhibition of calmodulin activity by insect venom peptides.
    Barnette MS; Daly R; Weiss B
    Biochem Pharmacol; 1983 Oct; 32(19):2929-33. PubMed ID: 6313011
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Inter-domain interaction and the structural flexibility of calmodulin in the connecting region of the terminal two domains.
    Yazawa M; Matsuzawa F; Yagi K
    J Biochem; 1990 Feb; 107(2):287-91. PubMed ID: 2361959
    [TBL] [Abstract][Full Text] [Related]  

  • 33. X-ray crystallographic and chromatographic characterization of the crystals of Ca2+-calmodulin complexed with bee venom melittin.
    Tanaka Y; Takahashi S; Mitsui Y; Itoh S; Iitaka Y; Kasai H; Okuyama T
    J Mol Biol; 1985 Dec; 186(3):675-7. PubMed ID: 4093983
    [TBL] [Abstract][Full Text] [Related]  

  • 34. G protein-bound conformation of mastoparan-X, a receptor-mimetic peptide.
    Sukumar M; Higashijima T
    J Biol Chem; 1992 Oct; 267(30):21421-4. PubMed ID: 1400455
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Interaction of heme with amphiphilic peptides: use of hemin-CN to probe the interaction of calmodulin with its target peptides.
    Leclerc E; Leclerc L; Poyart C; Marden MC
    Arch Biochem Biophys; 1993 Oct; 306(1):158-62. PubMed ID: 8215397
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Liquid-phase synthesis of naturally occurring peptides, II. Syntheses of three mast cell degranulating tetradecapeptide amides from wasp venoms.
    Colombo R
    Hoppe Seylers Z Physiol Chem; 1981 Oct; 362(10):1393-403. PubMed ID: 7309002
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structure of the proteolytic fragment F34 of calmodulin in the absence and presence of mastoparan as revealed by solution X-ray scattering.
    Izumi Y; Wakita M; Yoshino H; Matsushima N
    Biochemistry; 1992 Dec; 31(48):12266-71. PubMed ID: 1457423
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Conformational analysis of a 12-residue analogue of mastoparan and of mastoparan X.
    Faerman CH; Ripoll DR
    Proteins; 1992 Feb; 12(2):111-6. PubMed ID: 1603800
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ca2+-dependent high-affinity complex formation between calmodulin and melittin.
    Comte M; Maulet Y; Cox JA
    Biochem J; 1983 Jan; 209(1):269-72. PubMed ID: 6847615
    [TBL] [Abstract][Full Text] [Related]  

  • 40. 113Cd-NMR evidence for cooperative interaction between amino- and carboxyl-terminal domains of calmodulin.
    Ikura M; Hasegawa N; Aimoto S; Yazawa M; Yagi K; Hikichi K
    Biochem Biophys Res Commun; 1989 Jun; 161(3):1233-8. PubMed ID: 2742586
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.