These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 37299662)

  • 1. Optimum Contact Configurations for Quasi-One-Dimensional Phosphorene Nanodevices.
    Poljak M; Matić M
    Nanomaterials (Basel); 2023 May; 13(11):. PubMed ID: 37299662
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lower Limits of Contact Resistance in Phosphorene Nanodevices with Edge Contacts.
    Poljak M; Matić M; Župančić T; Zeljko A
    Nanomaterials (Basel); 2022 Feb; 12(4):. PubMed ID: 35214987
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bandstructure and Size-Scaling Effects in the Performance of Monolayer Black Phosphorus Nanodevices.
    Poljak M; Matić M
    Materials (Basel); 2021 Dec; 15(1):. PubMed ID: 35009387
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of Rh, Ru, and Pd Leads and Contact Topologies on Performance of WSe
    Chung CH; Lin CY; Liu HY; Nian SE; Chen YT; Tsai CE
    Materials (Basel); 2024 Jun; 17(11):. PubMed ID: 38893929
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrogenated cove-edge aluminum nitride nanoribbons for ultrascaled resonant tunneling diode applications: a computational DFT study.
    Kharwar S; Singh S; Kaushik BK
    Nanotechnology; 2023 Mar; 34(24):. PubMed ID: 36857765
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metallization-Induced Quantum Limits of Contact Resistance in Graphene Nanoribbons with One-Dimensional Contacts.
    Poljak M; Matić M
    Materials (Basel); 2021 Jun; 14(13):. PubMed ID: 34209314
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Signature of excitonic insulators in phosphorene nanoribbons.
    Felipe Pereira de Oliveira A; Luisa da Rosa A; Cavalheiro Dias A
    J Phys Condens Matter; 2024 May; 36(34):. PubMed ID: 38744299
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultra-Narrow Phosphorene Nanoribbons Produced by Facile Electrochemical Process.
    Abu UO; Akter S; Nepal B; Pitton KA; Guiton BS; Strachan DR; Sumanasekera G; Wang H; Jasinski JB
    Adv Sci (Weinh); 2022 Nov; 9(31):e2203148. PubMed ID: 36068163
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bandgap scaling and negative differential resistance behavior of zigzag phosphorene antidot nanoribbons (ZPANRs).
    Carmel S; Pon A; Meenakshisundaram N; Ramesh R; Bhattacharyya A
    Phys Chem Chem Phys; 2018 May; 20(21):14855-14863. PubMed ID: 29781502
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The electronic transport properties of zigzag phosphorene-like MX (M = Ge/Sn, X = S/Se) nanostructures.
    Zhang M; An Y; Sun Y; Wu D; Chen X; Wang T; Xu G; Wang K
    Phys Chem Chem Phys; 2017 Jul; 19(26):17210-17215. PubMed ID: 28639663
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stability and carrier transport properties of phosphorene-based polymorphic nanoribbons.
    Kaur S; Kumar A; Srivastava S; Pandey R; Tankeshwar K
    Nanotechnology; 2018 Apr; 29(15):155701. PubMed ID: 29388562
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quasi-one-dimensional phosphorene nanoribbons grown on silicon by space-confined chemical vapor transport.
    Du K; Wang M; Liang Z; Lv Q; Hou H; Lei S; Hussain S; Liu G; Liu J; Qiao G
    Chem Commun (Camb); 2023 Feb; 59(17):2433-2436. PubMed ID: 36723200
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electric-Field Control in Phosphorene-Based Heterostructures.
    Pantis-Simut CA; Preda AT; Filipoiu N; Allosh A; Nemnes GA
    Nanomaterials (Basel); 2022 Oct; 12(20):. PubMed ID: 36296840
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface decoration of phosphorene nanoribbons with 4d transition metal atoms for spintronics.
    Fu XX; Niu Y; Hao ZW; Dong MM; Wang CK
    Phys Chem Chem Phys; 2020 Jul; 22(28):16063-16071. PubMed ID: 32633289
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Facile Production of Phosphorene Nanoribbons towards Application in Lithium Metal Battery.
    Yu W; Yang J; Li J; Zhang K; Xu H; Zhou X; Chen W; Loh KP
    Adv Mater; 2021 Sep; 33(35):e2102083. PubMed ID: 34292638
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantum transport through the edge states of zigzag phosphorene nanoribbons in presence of a single point defect: analytic Green's function method.
    Amini M; Soltani M
    J Phys Condens Matter; 2019 May; 31(21):215301. PubMed ID: 30794998
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Schottky diodes based on blue phosphorene nanoribbon homojunctions.
    Liu YH; Lu XQ; Dong MM; Zhang GP; Li ZL; Wang CK; Fu XX
    Phys Chem Chem Phys; 2022 Dec; 24(47):29057-29063. PubMed ID: 36437710
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phosphorene as a Superior Gas Sensor: Selective Adsorption and Distinct I-V Response.
    Kou L; Frauenheim T; Chen C
    J Phys Chem Lett; 2014 Aug; 5(15):2675-81. PubMed ID: 26277962
    [TBL] [Abstract][Full Text] [Related]  

  • 19. One- and two-dimensional electrical contacts and transport properties in monolayer black phosphorene-Ni interface.
    Zhong K; Xu G; Yang Y; Zhang JM; Huang Z
    J Phys Condens Matter; 2021 Feb; 33(14):. PubMed ID: 33445165
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancement of tunneling current in phosphorene tunnel field effect transistors by surface defects.
    Lu J; Fan ZQ; Gong J; Chen JZ; ManduLa H; Zhang YY; Yang SY; Jiang XW
    Phys Chem Chem Phys; 2018 Feb; 20(8):5699-5707. PubMed ID: 29410993
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.