These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 37299684)
1. Environmentally Benign pSOFC for Emissions-Free Energy: Assessment of Nickel Network Resistance in Anodic Ni/BCY15 Nanocatalyst. Gabrovska M; Nikolova D; Kolev H; Karashanova D; Tzvetkov P; Burdin B; Mladenova E; Vladikova D; Tabakova T Nanomaterials (Basel); 2023 May; 13(11):. PubMed ID: 37299684 [TBL] [Abstract][Full Text] [Related]
2. New Insights on the Nickel State Deposited by Hydrazine Wet-Chemical Synthesis Route in the Ni/BCY15 Proton-Conducting SOFC Anode. Nikolova D; Gabrovska M; Raikova G; Mladenova E; Vladikova D; Kostov KL; Karakirova Y Nanomaterials (Basel); 2021 Nov; 11(12):. PubMed ID: 34947572 [TBL] [Abstract][Full Text] [Related]
3. Enhancing Sulfur Tolerance of Ni-Based Cermet Anodes of Solid Oxide Fuel Cells by Ytterbium-Doped Barium Cerate Infiltration. Li M; Hua B; Luo JL; Jiang SP; Pu J; Chi B; Li J ACS Appl Mater Interfaces; 2016 Apr; 8(16):10293-301. PubMed ID: 27052726 [TBL] [Abstract][Full Text] [Related]
4. Biogas as a fuel for solid oxide fuel cells and synthesis gas production: effects of ceria-doping and hydrogen sulfide on the performance of nickel-based anode materials. Laycock CJ; Staniforth JZ; Ormerod RM Dalton Trans; 2011 May; 40(20):5494-504. PubMed ID: 21494706 [TBL] [Abstract][Full Text] [Related]
5. The impact of NiO on microstructure and electrical property of solid oxide fuel cell anode. Li Y; Luo ZY; Yu CJ; Luo D; Xu ZA; Cen KF J Zhejiang Univ Sci B; 2005 Nov; 6(11):1124-9. PubMed ID: 16252348 [TBL] [Abstract][Full Text] [Related]
6. Electrolytic Corrosion Behavior of 20 Cu-20 Ni-54 NiFe Tao YQ; Li ZY; Xiong HW; He MJ; Wang BX Materials (Basel); 2022 Aug; 15(15):. PubMed ID: 35955318 [TBL] [Abstract][Full Text] [Related]
7. Performance of a Direct Methane Solid Oxide Fuel Cell Using Nickel-Ceria-Yttria Stabilized Zirconia as the Anode. Escudero MJ; Yeste MP; Cauqui MÁ; Muñoz MÁ Materials (Basel); 2020 Jan; 13(3):. PubMed ID: 32012909 [TBL] [Abstract][Full Text] [Related]
8. In situ fabrication of high-performance Ni-GDC-nanocube core-shell anode for low-temperature solid-oxide fuel cells. Yamamoto K; Qiu N; Ohara S Sci Rep; 2015 Nov; 5():17433. PubMed ID: 26615816 [TBL] [Abstract][Full Text] [Related]
9. Preparation of Ultrafine Co- and Ni-Coated (Ti,W,Mo,Ta)(C,N) Powders and Their Influence on the Microstructure of Ti(C,N)-Based Cermets. Zhao Z; Jia P; Zhang Y; Ma L; Sun J; Xu Y; Wu Y Materials (Basel); 2024 Apr; 17(8):. PubMed ID: 38673164 [TBL] [Abstract][Full Text] [Related]
10. Bimetallic Nickel/Ruthenium Catalysts Synthesized by Atomic Layer Deposition for Low-Temperature Direct Methanol Solid Oxide Fuel Cells. Jeong H; Kim JW; Park J; An J; Lee T; Prinz FB; Shim JH ACS Appl Mater Interfaces; 2016 Nov; 8(44):30090-30098. PubMed ID: 27739300 [TBL] [Abstract][Full Text] [Related]
11. Rational Design of Superior, Coking-Resistant, Nickel-Based Anodes through Tailoring Interfacial Reactions for Solid Oxide Fuel Cells Operated on Methane Fuel. Qu J; Wang W; Chen Y; Li H; Zhong Y; Yang G; Zhou W; Shao Z ChemSusChem; 2018 Sep; 11(18):3112-3119. PubMed ID: 30039570 [TBL] [Abstract][Full Text] [Related]
12. A Stability Study of Ni/Yttria-Stabilized Zirconia Anode for Direct Ammonia Solid Oxide Fuel Cells. Yang J; Molouk AF; Okanishi T; Muroyama H; Matsui T; Eguchi K ACS Appl Mater Interfaces; 2015 Dec; 7(51):28701-7. PubMed ID: 26642379 [TBL] [Abstract][Full Text] [Related]
13. Vanadium-Doped Strontium Molybdate with Exsolved Ni Nanoparticles as Anode Material for Solid Oxide Fuel Cells. Wan Y; Xing Y; Xie Y; Shi N; Xu J; Xia C ACS Appl Mater Interfaces; 2019 Nov; 11(45):42271-42279. PubMed ID: 31647214 [TBL] [Abstract][Full Text] [Related]
14. Nickel-based anode with water storage capability to mitigate carbon deposition for direct ethanol solid oxide fuel cells. Wang W; Su C; Ran R; Zhao B; Shao Z; Tade MO; Liu S ChemSusChem; 2014 Jun; 7(6):1719-28. PubMed ID: 24798121 [TBL] [Abstract][Full Text] [Related]
15. Mesoporous NiO-samaria doped ceria for low-temperature solid oxide fuel cells. Kim JY; Kim JH; Choi HW; Kim KH; Park SJ J Nanosci Nanotechnol; 2014 Aug; 14(8):6399-403. PubMed ID: 25936125 [TBL] [Abstract][Full Text] [Related]
16. Effects of Fe, Ni, and Fe/Ni metallic nanoparticles on power production and biosurfactant production from used vegetable oil in the anode chamber of a microbial fuel cell. Liu J; Vipulanandan C Waste Manag; 2017 Aug; 66():169-177. PubMed ID: 28404510 [TBL] [Abstract][Full Text] [Related]
17. Electrochemical and catalytic properties of Ni/BaCe0.75Y0.25O3-δ anode for direct ammonia-fueled solid oxide fuel cells. Yang J; Molouk AF; Okanishi T; Muroyama H; Matsui T; Eguchi K ACS Appl Mater Interfaces; 2015 Apr; 7(13):7406-12. PubMed ID: 25804559 [TBL] [Abstract][Full Text] [Related]
18. A redox-stable efficient anode for solid-oxide fuel cells. Tao S; Irvine JT Nat Mater; 2003 May; 2(5):320-3. PubMed ID: 12692533 [TBL] [Abstract][Full Text] [Related]
19. A Self-Crystallized Nanofibrous Ni-GDC Anode by Magnetron Sputtering for Low-Temperature Solid Oxide Fuel Cells. Ryu S; Hwang J; Jeong W; Yu W; Lee S; Kim K; Zheng C; Lee YH; Cha SW ACS Appl Mater Interfaces; 2023 Mar; 15(9):11845-11852. PubMed ID: 36823788 [TBL] [Abstract][Full Text] [Related]
20. Multiple Effects of Iron and Nickel Additives on the Properties of Proton Conducting Yttrium-Doped Barium Cerate-Zirconate Electrolytes for High-Performance Solid Oxide Fuel Cells. Liu Z; Chen M; Zhou M; Cao D; Liu P; Wang W; Liu M; Huang J; Shao J; Liu J ACS Appl Mater Interfaces; 2020 Nov; 12(45):50433-50445. PubMed ID: 33108727 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]