These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 37299714)

  • 1. Acoustic-Signal-Based Damage Detection of Wind Turbine Blades-A Review.
    Ding S; Yang C; Zhang S
    Sensors (Basel); 2023 May; 23(11):. PubMed ID: 37299714
    [TBL] [Abstract][Full Text] [Related]  

  • 2. π-FBG Fiber Optic Acoustic Emission Sensor for the Crack Detection of Wind Turbine Blades.
    Yan Q; Che X; Li S; Wang G; Liu X
    Sensors (Basel); 2023 Sep; 23(18):. PubMed ID: 37765878
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acoustic-based whistle detection of drain hole for wind turbine blade.
    Chen B; Zhang M; Lin Z; Xu H
    ISA Trans; 2022 Dec; 131():736-747. PubMed ID: 35618502
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerical and Experimental Analysis of Horizontal-Axis Wind Turbine Blade Fatigue Life.
    Shah I; Khan A; Ali M; Shahab S; Aziz S; Noon MAA; Tipu JAK
    Materials (Basel); 2023 Jul; 16(13):. PubMed ID: 37445118
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Use of Wind Turbine Blades to Build Road Noise Barriers as an Example of a Circular Economy Model.
    Broniewicz M; Halicka A; Buda-Ożóg L; Broniewicz F; Nykiel D; Jabłoński Ł
    Materials (Basel); 2024 Apr; 17(9):. PubMed ID: 38730855
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiobjective Optimization of Composite Wind Turbine Blade.
    Jureczko M; Mrówka M
    Materials (Basel); 2022 Jul; 15(13):. PubMed ID: 35806770
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Damage Detection Based on Static Strain Responses Using FBG in a Wind Turbine Blade.
    Tian S; Yang Z; Chen X; Xie Y
    Sensors (Basel); 2015 Aug; 15(8):19992-20005. PubMed ID: 26287200
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Root Causes and Mechanisms of Failure of Wind Turbine Blades: Overview.
    Mishnaevsky L
    Materials (Basel); 2022 Apr; 15(9):. PubMed ID: 35591294
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploratory Study on the Application of Graphene Platelet-Reinforced Composite to Wind Turbine Blade.
    Kim HJ; Cho JR
    Polymers (Basel); 2024 Jul; 16(14):. PubMed ID: 39065319
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of Vibration Signals Based on Machine Learning for Crack Detection in a Low-Power Wind Turbine.
    Rangel-Rodriguez AH; Granados-Lieberman D; Amezquita-Sanchez JP; Bueno-Lopez M; Valtierra-Rodriguez M
    Entropy (Basel); 2023 Aug; 25(8):. PubMed ID: 37628218
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Pattern Recognition Approach to Acoustic Emission Data Originating from Fatigue of Wind Turbine Blades.
    Tang J; Soua S; Mares C; Gan TH
    Sensors (Basel); 2017 Nov; 17(11):. PubMed ID: 29104245
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural Testing by Torsion of Scalable Wind Turbine Blades.
    Morăraș CI; Goanță V; Istrate B; Munteanu C; Dobrescu GS
    Polymers (Basel); 2022 Sep; 14(19):. PubMed ID: 36235885
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Machine Vision Method for Identifying Blade Tip Clearance in Wind Turbines.
    Zhang L; Wei J
    Sensors (Basel); 2024 Sep; 24(18):. PubMed ID: 39338680
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wind turbine blade waste in 2050.
    Liu P; Barlow CY
    Waste Manag; 2017 Apr; 62():229-240. PubMed ID: 28215972
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A data driven approach for condition monitoring of wind turbine blade using vibration signals through best-first tree algorithm and functional trees algorithm: A comparative study.
    Joshuva A; Sugumaran V
    ISA Trans; 2017 Mar; 67():160-172. PubMed ID: 28189258
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Manufacture of High-Performance Tidal Turbine Blades Using Advanced Composite Manufacturing Technologies.
    Finnegan W; Allen R; Glennon C; Maguire J; Flanagan M; Flanagan T
    Appl Compos Mater (Dordr); 2021; 28(6):2061-2086. PubMed ID: 35035103
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Numerical modeling of wind turbine aerodynamic noise in the time domain.
    Lee S; Lee S; Lee S
    J Acoust Soc Am; 2013 Feb; 133(2):EL94-100. PubMed ID: 23363200
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrasound-based identification of damage in wind turbine blades using novelty detection.
    Oliveira MA; Simas Filho EF; Albuquerque MCS; Santos YTB; da Silva IC; Farias CTT
    Ultrasonics; 2020 Dec; 108():106166. PubMed ID: 32526526
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PSO-BP Neural Network-Based Strain Prediction of Wind Turbine Blades.
    Liu X; Liu Z; Liang Z; Zhu SP; Correia JAFO; De Jesus AMP
    Materials (Basel); 2019 Jun; 12(12):. PubMed ID: 31212753
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Trend Decomposition for Temperature Compensation in a Radar-Based Structural Health Monitoring System of Wind Turbine Blades.
    Simon J; Moll J; Krozer V
    Sensors (Basel); 2024 Jan; 24(3):. PubMed ID: 38339517
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.