These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 37299714)

  • 21. Natural Frequency Transmissibility for Detection of Cracks in Horizontal Axis Wind Turbine Blades.
    Henderson R; Azhari F; Sinclair A
    Sensors (Basel); 2024 Jul; 24(14):. PubMed ID: 39065855
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Prediction of Fatigue Crack Growth in Gas Turbine Engine Blades Using Acoustic Emission.
    Zhang Z; Yang G; Hu K
    Sensors (Basel); 2018 Apr; 18(5):. PubMed ID: 29693556
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A New Concept of Sustainable Wind Turbine Blades: Bio-Inspired Design with Engineered Adhesives.
    Mishnaevsky L; Jafarpour M; Krüger J; Gorb SN
    Biomimetics (Basel); 2023 Sep; 8(6):. PubMed ID: 37887579
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sustainable End-of-Life Management of Wind Turbine Blades: Overview of Current and Coming Solutions.
    Mishnaevsky L
    Materials (Basel); 2021 Feb; 14(5):. PubMed ID: 33673684
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Wind turbine blades fault diagnosis based on vibration dataset analysis.
    Ogaili AAF; Abdulhady Jaber A; Hamzah MN
    Data Brief; 2023 Aug; 49():109414. PubMed ID: 37520651
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Visualization and analysis of vortex-turbine intersections in wind farms.
    Shafii S; Obermaier H; Linn R; Koo E; Hlawitschka M; Garth C; Hamann B; Joy KI
    IEEE Trans Vis Comput Graph; 2013 Sep; 19(9):1579-91. PubMed ID: 23846101
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Autonomous Sensor System for Low-Capacity Wind Turbine Blade Vibration Measurement.
    Muxica D; Rivera S; Orchard ME; Ahumada C; Jaramillo F; Bravo F; Gutiérrez JM; Astroza R
    Sensors (Basel); 2024 Mar; 24(6):. PubMed ID: 38543996
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of Graphene Reinforcement on Static Bending, Free Vibration, and Torsion of Wind Turbine Blades.
    Kim HJ; Cho JR
    Materials (Basel); 2024 Jul; 17(13):. PubMed ID: 38998411
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Damage Detection for Rotating Blades Using Digital Image Correlation with an AC-SURF Matching Algorithm.
    Gu J; Liu G; Li M
    Sensors (Basel); 2022 Oct; 22(21):. PubMed ID: 36365808
    [TBL] [Abstract][Full Text] [Related]  

  • 30. In-Depth Study on the Application of a Graphene Platelet-reinforced Composite to Wind Turbine Blades.
    Kim HJ; Cho JR
    Materials (Basel); 2024 Aug; 17(16):. PubMed ID: 39203084
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Study on coupled mode flutter parameters of large wind turbine blades.
    Zhuang Y; Yuan G
    Sci Rep; 2024 Jun; 14(1):12804. PubMed ID: 38834607
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Delamination Fracture Behavior of Unidirectional Carbon Reinforced Composites Applied to Wind Turbine Blades.
    Boyano A; Lopez-Guede JM; Torre-Tojal L; Fernandez-Gamiz U; Zulueta E; Mujika F
    Materials (Basel); 2021 Jan; 14(3):. PubMed ID: 33513957
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Occupational exposures to styrene vapor in a manufacturing plant for fiber-reinforced composite wind turbine blades.
    Hammond D; Garcia A; Feng HA
    Ann Occup Hyg; 2011 Jul; 55(6):591-600. PubMed ID: 21597049
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Investigation of the best possible methods for wind turbine blade waste management by using GIS and FAHP: Turkey case.
    Ozturk S; Karipoglu F
    Environ Sci Pollut Res Int; 2023 Feb; 30(6):15020-15033. PubMed ID: 36168016
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Image Recognition of Wind Turbine Blade Defects Using Attention-Based MobileNetv1-YOLOv4 and Transfer Learning.
    Zhang C; Yang T; Yang J
    Sensors (Basel); 2022 Aug; 22(16):. PubMed ID: 36015768
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Wind turbine blade shear web disbond detection using rotor blade operational sensing and data analysis.
    Myrent N; Adams DE; Griffith DT
    Philos Trans A Math Phys Eng Sci; 2015 Feb; 373(2035):. PubMed ID: 25583871
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Performance Analysis of Reinforced Epoxy Functionalized Carbon Nanotubes Composites for Vertical Axis Wind Turbine Blade.
    Elhenawy Y; Fouad Y; Marouani H; Bassyouni M
    Polymers (Basel); 2021 Jan; 13(3):. PubMed ID: 33525701
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Wind turbine icing characteristics and icing-induced power losses to utility-scale wind turbines.
    Gao L; Hu H
    Proc Natl Acad Sci U S A; 2021 Oct; 118(42):. PubMed ID: 34635597
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Moving Accelerometers to the Tip: Monitoring of Wind Turbine Blade Bending Using 3D Accelerometers and Model-Based Bending Shapes.
    Loss T; Bergmann A
    Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32957685
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Unsustainable Wind Turbine Blade Disposal Practices in the United States.
    Ramirez-Tejeda K; Turcotte DA; Pike S
    New Solut; 2017 Feb; 26(4):581-598. PubMed ID: 27794074
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.