These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 37299755)

  • 1. Cyber-Physical System for Smart Traffic Light Control.
    Deshpande S; Hsieh SJ
    Sensors (Basel); 2023 May; 23(11):. PubMed ID: 37299755
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hybrid SVM-CNN Classification Technique for Human-Vehicle Targets in an Automotive LFMCW Radar.
    Wu Q; Gao T; Lai Z; Li D
    Sensors (Basel); 2020 Jun; 20(12):. PubMed ID: 32575841
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Left-turning vehicle-pedestrian conflicts at signalized intersections with traffic lights: Benefit or harm? A two-stage study.
    He YL; Li RT; Li L; Schwebel DC; Huang HL; Yin QY; Hu GQ
    Chin J Traumatol; 2019 Apr; 22(2):63-68. PubMed ID: 30962130
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of pedestrian-vehicle conflicts at signalized intersections based on long short-term memory neural network.
    Zhang S; Abdel-Aty M; Cai Q; Li P; Ugan J
    Accid Anal Prev; 2020 Dec; 148():105799. PubMed ID: 33080377
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unveiling the relevance of traffic enforcement cameras on the severity of vehicle-pedestrian collisions in an urban environment with machine learning models.
    Pineda-Jaramillo J; Barrera-Jiménez H; Mesa-Arango R
    J Safety Res; 2022 Jun; 81():225-238. PubMed ID: 35589294
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pedestrian Traffic Light Control with Crosswalk FMCW Radar and Group Tracking Algorithm.
    Nimac P; Krpič A; Batagelj B; Gams A
    Sensors (Basel); 2022 Feb; 22(5):. PubMed ID: 35270899
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient mapping of crash risk at intersections with connected vehicle data and deep learning models.
    Hu J; Huang MC; Yu X
    Accid Anal Prev; 2020 Sep; 144():105665. PubMed ID: 32683130
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Leading pedestrian intervals - Yay or Nay? A Before-After evaluation of multiple conflict types using an enhanced Non-Stationary framework integrating quantile regression into Bayesian hierarchical extreme value analysis.
    Arun A; Lyon C; Sayed T; Washington S; Loewenherz F; Akers D; Ananthanarayanan G; Shu Y; Bandy M; Haque MM
    Accid Anal Prev; 2023 Mar; 181():106929. PubMed ID: 36571971
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting pedestrian crosswalk behavior using Convolutional Neural Networks.
    Liang E; Stamp M
    Traffic Inj Prev; 2023; 24(4):338-343. PubMed ID: 36913598
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-learning adaptive traffic signal control for real-time safety optimization.
    Essa M; Sayed T
    Accid Anal Prev; 2020 Oct; 146():105713. PubMed ID: 32823035
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Machine Learning Approach to Pedestrian Detection for Autonomous Vehicles Using High-Definition 3D Range Data.
    Navarro PJ; Fernández C; Borraz R; Alonso D
    Sensors (Basel); 2016 Dec; 17(1):. PubMed ID: 28025565
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Major urban road characteristics and injured pedestrians: A representative survey of intersections in Montréal, Quebec.
    Morency P; Archambault J; Cloutier MS; Tremblay M; Plante C
    Can J Public Health; 2015 Oct; 106(6):e388-94. PubMed ID: 26680430
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pedestrian's risk-based negotiation model for self-driving vehicles to get the right of way.
    Gupta S; Vasardani M; Lohani B; Winter S
    Accid Anal Prev; 2019 Mar; 124():163-173. PubMed ID: 30660067
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A dynamic traffic signal scheduling system based on improved greedy algorithm.
    Sun G; Qi R; Liu Y; Xu F
    PLoS One; 2024; 19(3):e0298417. PubMed ID: 38489329
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deep Learning-Based Human Activity Real-Time Recognition for Pedestrian Navigation.
    Ye J; Li X; Zhang X; Zhang Q; Chen W
    Sensors (Basel); 2020 Apr; 20(9):. PubMed ID: 32366055
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling pedestrian behavior in pedestrian-vehicle near misses: A continuous Gaussian Process Inverse Reinforcement Learning (GP-IRL) approach.
    Nasernejad P; Sayed T; Alsaleh R
    Accid Anal Prev; 2021 Oct; 161():106355. PubMed ID: 34461394
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pedestrian and Vehicle Detection in Autonomous Vehicle Perception Systems-A Review.
    Galvao LG; Abbod M; Kalganova T; Palade V; Huda MN
    Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770575
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of pedestrian- and vehicle-related safety performance functions using Bayesian bivariate hierarchical models with mode-specific covariates.
    Singh M; Cheng W; Samuelson D; Kwong J; Li B; Cao M; Li Y
    J Safety Res; 2021 Sep; 78():180-188. PubMed ID: 34399913
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pedestrian safety at traffic signals: a study carried out with the help of a traffic conflicts technique.
    Gårder P
    Accid Anal Prev; 1989 Oct; 21(5):435-44. PubMed ID: 2619853
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Social Force Model-Based Safety Evaluation of Intersections in Arterials Considering the Pedestrian Yield Rule.
    Yao J; Li Y; He J
    Int J Environ Res Public Health; 2021 Nov; 18(23):. PubMed ID: 34886182
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.