These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 37299821)

  • 1. Vehicle-in-Virtual-Environment (VVE) Method for Autonomous Driving System Development, Evaluation and Demonstration.
    Cao X; Chen H; Gelbal SY; Aksun-Guvenc B; Guvenc L
    Sensors (Basel); 2023 May; 23(11):. PubMed ID: 37299821
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Bayesian extreme value theory modelling framework to assess corridor-wide pedestrian safety using autonomous vehicle sensor data.
    Singh S; Ali Y; Haque MM
    Accid Anal Prev; 2024 Feb; 195():107416. PubMed ID: 38056025
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploring the impacts of built environment on pedestrian injury severity involving distracted driving.
    Khan NA; Habib MA
    J Safety Res; 2022 Feb; 80():97-108. PubMed ID: 35249632
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lighting a Path for Autonomous Vehicle Communication: The Effect of Light Projection on the Detection of Reversing Vehicles by Older Adult Pedestrians.
    Mason B; Lakshmanan S; McAuslan P; Waung M; Jia B
    Int J Environ Res Public Health; 2022 Nov; 19(22):. PubMed ID: 36429416
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pedestrian safety in an automated driving environment: Calibrating and evaluating the responsibility-sensitive safety model.
    Wang X; Ye C; Quddus M; Morris A
    Accid Anal Prev; 2023 Nov; 192():107265. PubMed ID: 37619318
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinematic cues in driver-pedestrian communication to support safe road crossing.
    Zach Noonan T; Gershon P; Domeyer J; Mehler B; Reimer B
    Accid Anal Prev; 2023 Nov; 192():107236. PubMed ID: 37531855
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluating current and future pedestrian mid-block crossing safety treatments using virtual reality simulation.
    Angulo AV; Robartes E; Guo X; Donna Chen T; Heydarian A; Smith BL
    Accid Anal Prev; 2024 Oct; 206():107715. PubMed ID: 38996532
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diagnostic analysis of environmental factors affecting the severity of traffic crashes: From the perspective of pedestrian-vehicle and vehicle-vehicle collisions.
    Wang K; Zhang W; Jin L; Feng Z; Zhu D; Cong H; Yu H
    Traffic Inj Prev; 2022; 23(1):17-22. PubMed ID: 34813406
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel model for real-time risk evaluation of vehicle-pedestrian interactions at intersections.
    Wang T; Ge YE; Wang Y; Chen W; Fu Q; Niu Y
    Accid Anal Prev; 2024 Oct; 206():107727. PubMed ID: 39079443
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiple Event-Based Simulation Scenario Generation Approach for Autonomous Vehicle Smart Sensors and Devices.
    Park J; Wen M; Sung Y; Cho K
    Sensors (Basel); 2019 Oct; 19(20):. PubMed ID: 31615164
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Active Obstacle Avoidance Trajectory Planning for Vehicles Based on Obstacle Potential Field and MPC in V2P Scenario.
    Pan R; Jie L; Zhao X; Wang H; Yang J; Song J
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991959
    [TBL] [Abstract][Full Text] [Related]  

  • 12. External Human-Machine Interfaces for Autonomous Vehicle-to-Pedestrian Communication: A Review of Empirical Work.
    Rouchitsas A; Alm H
    Front Psychol; 2019; 10():2757. PubMed ID: 31920810
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The impact of the connected environment on driving behavior and safety: A driving simulator study.
    Ali Y; Sharma A; Haque MM; Zheng Z; Saifuzzaman M
    Accid Anal Prev; 2020 Sep; 144():105643. PubMed ID: 32593781
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effectiveness of augmented reality warnings on driving behaviour whilst approaching pedestrian crossings: A driving simulator study.
    Calvi A; D'Amico F; Ferrante C; Bianchini Ciampoli L
    Accid Anal Prev; 2020 Nov; 147():105760. PubMed ID: 32932209
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unveiling the relevance of traffic enforcement cameras on the severity of vehicle-pedestrian collisions in an urban environment with machine learning models.
    Pineda-Jaramillo J; Barrera-Jiménez H; Mesa-Arango R
    J Safety Res; 2022 Jun; 81():225-238. PubMed ID: 35589294
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Collision-avoidance lane change control method for enhancing safety for connected vehicle platoon in mixed traffic environment.
    Ma Y; Liu Q; Fu J; Liufu K; Li Q
    Accid Anal Prev; 2023 May; 184():106999. PubMed ID: 36780868
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multilevel models for evaluating the risk of pedestrian-motor vehicle collisions at intersections and mid-blocks.
    Quistberg DA; Howard EJ; Ebel BE; Moudon AV; Saelens BE; Hurvitz PM; Curtin JE; Rivara FP
    Accid Anal Prev; 2015 Nov; 84():99-111. PubMed ID: 26339944
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reconstruction of Vehicle-pedestrian Collision Road Traffic Accidents Based on PC-Crash Software.
    Duan TL; He YW; Li Z; Yang F; Li L; Qu YQ
    Fa Yi Xue Za Zhi; 2019 Aug; 35(4):440-443. PubMed ID: 31532154
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An open simulation approach to identify chances and limitations for vulnerable road user (VRU) active safety.
    Seiniger P; Bartels O; Pastor C; Wisch M
    Traffic Inj Prev; 2013; 14 Suppl():S2-12. PubMed ID: 23905588
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Passenger and heavy vehicle collisions with pedestrians: Assessment of injury mechanisms and risk.
    Schubert A; Babisch S; Scanlon JM; Campolettano ET; Roessler R; Unger T; McMurry TL
    Accid Anal Prev; 2023 Sep; 190():107139. PubMed ID: 37320981
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.