These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 37299882)

  • 1. A Mobile Sensing Framework for Bridge Modal Identification through an Inverse Problem Solution Procedure and Moving-Window Time Series Models.
    Talebi-Kalaleh M; Mei Q
    Sensors (Basel); 2023 May; 23(11):. PubMed ID: 37299882
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimating Bridge Natural Frequencies Based on Modal Analysis of Vehicle-Bridge Synchronized Vibration Data.
    Mudahemuka E; Miyagi M; Shin R; Kaneko N; Okada Y; Yamamoto K
    Sensors (Basel); 2024 Feb; 24(4):. PubMed ID: 38400218
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Operational Modal Analysis of Bridge Structures with Data from GNSS/Accelerometer Measurements.
    Xiong C; Lu H; Zhu J
    Sensors (Basel); 2017 Feb; 17(3):. PubMed ID: 28241472
    [TBL] [Abstract][Full Text] [Related]  

  • 4. BwimNet: A Novel Method for Identifying Moving Vehicles Utilizing a Modified Encoder-Decoder Architecture.
    Wu Y; Deng L; He W
    Sensors (Basel); 2020 Dec; 20(24):. PubMed ID: 33327614
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural Damage Identification of Bridges from Passing Test Vehicles.
    Yang Y; Zhu Y; Wang LL; Jia BY; Jin R
    Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30463259
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inverse Filtering for Frequency Identification of Bridges Using Smartphones in Passing Vehicles: Fundamental Developments and Laboratory Verifications.
    Shirzad-Ghaleroudkhani N; Gül M
    Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32098089
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Technique for Determining Bridge Displacement Response Using MEMS Accelerometers.
    Sekiya H; Kimura K; Miki C
    Sensors (Basel); 2016 Feb; 16(2):257. PubMed ID: 26907287
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extended Kalman filter algorithm for non-roughness and moving damage identification.
    Ding HL; Zhang C; Gao YW; Huang JP
    Sci Rep; 2022 Dec; 12(1):21958. PubMed ID: 36536074
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of Damping on the Identification of Bridge Properties Using Vehicle Scanning Methods.
    Erduran E; Gonen S
    Sensors (Basel); 2024 Sep; 24(17):. PubMed ID: 39275697
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of a Reference-Free Indirect Bridge Displacement Sensing System.
    Won J; Park JW; Park J; Shin J; Park M
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34451089
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Discussion on a Vehicle-Bridge Interaction System Identification in a Field Test.
    Shin R; Okada Y; Yamamoto K
    Sensors (Basel); 2023 Jan; 23(1):. PubMed ID: 36617137
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation of Frequency-Domain Dimension Reduction for A
    Li Z; Lan Y; Lin W
    Materials (Basel); 2023 Feb; 16(5):. PubMed ID: 36902987
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SHM-Based Probabilistic Fatigue Life Prediction for Bridges Based on FE Model Updating.
    Lee YJ; Cho S
    Sensors (Basel); 2016 Mar; 16(3):317. PubMed ID: 26950125
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Indirect Monitoring of Frequencies of a Multiple Span Bridge Using Data Collected from an Instrumented Train: A Field Case Study.
    Malekjafarian A; Khan MA; OBrien EJ; Micu EA; Bowe C; Ghiasi R
    Sensors (Basel); 2022 Oct; 22(19):. PubMed ID: 36236567
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bridge Damage Identification Using Vehicle Bump Based on Additional Virtual Masses.
    Zhang Q; Hou J; Jankowski Ł
    Sensors (Basel); 2020 Jan; 20(2):. PubMed ID: 31936696
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of Vibration Frequencies of Railway Bridges from Train-Mounted Sensors Using Wavelet Transformation.
    Erduran E; Pettersen FM; Gonen S; Lau A
    Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772230
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Scanning of Bridge Surface Roughness from Two-Axle Vehicle Response by EKF-UI and Contact Residual: Theoretical Study.
    Yang YB; Wang B; Wang Z; Shi K; Xu H
    Sensors (Basel); 2022 Apr; 22(9):. PubMed ID: 35591100
    [TBL] [Abstract][Full Text] [Related]  

  • 18.
    Fu Y; Zhu Y; Hoang T; Mechitov K; Spencer BF
    Sensors (Basel); 2022 Jul; 22(15):. PubMed ID: 35957256
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantifying the Impact of Environment Loads on Displacements in a Suspension Bridge with a Data-Driven Approach.
    Li J; Meng X; Hu L; Bao Y
    Sensors (Basel); 2024 Mar; 24(6):. PubMed ID: 38544140
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bridge Structure Deformation Prediction Based on GNSS Data Using Kalman-ARIMA-GARCH Model.
    Xin J; Zhou J; Yang SX; Li X; Wang Y
    Sensors (Basel); 2018 Jan; 18(1):. PubMed ID: 29351254
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.