These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 37299915)

  • 21. Growth and characterization of horizontally suspended CNTs across TiN electrode gaps.
    Santini CA; Cott DJ; Romo-Negreira A; Capraro BD; Sanseverino SR; De Gendt S; Groeseneken G; Vereecken PM
    Nanotechnology; 2010 Jun; 21(24):245604. PubMed ID: 20498525
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Carbon Nanotubes Grown on Metal Microelectrodes for the Detection of Dopamine.
    Yang C; Jacobs CB; Nguyen MD; Ganesana M; Zestos AG; Ivanov IN; Puretzky AA; Rouleau CM; Geohegan DB; Venton BJ
    Anal Chem; 2016 Jan; 88(1):645-52. PubMed ID: 26639609
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A nano-microstructured artificial-hair-cell-type sensor based on topologically graded 3D carbon nanotube bundles.
    Yilmazoglu O; Yadav S; Cicek D; Schneider JJ
    Nanotechnology; 2016 Sep; 27(36):365502. PubMed ID: 27481641
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Tailoring Interfacial Properties by Controlling Carbon Nanotube Coating Thickness on Glass Fibers Using Electrophoretic Deposition.
    Tamrakar S; An Q; Thostenson ET; Rider AN; Haque BZ; Gillespie JW
    ACS Appl Mater Interfaces; 2016 Jan; 8(2):1501-10. PubMed ID: 26699906
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nanoscale Structure-Property Relationships of Polyacrylonitrile/CNT Composites as a Function of Polymer Crystallinity and CNT Diameter.
    Gissinger JR; Pramanik C; Newcomb B; Kumar S; Heinz H
    ACS Appl Mater Interfaces; 2018 Jan; 10(1):1017-1027. PubMed ID: 29231715
    [TBL] [Abstract][Full Text] [Related]  

  • 26. High performance semiconducting enriched carbon nanotube thin film transistors using metallic carbon nanotubes as electrodes.
    Sarker BK; Kang N; Khondaker SI
    Nanoscale; 2014 May; 6(9):4896-902. PubMed ID: 24671657
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Continuous electrodeposition for lightweight, highly conducting and strong carbon nanotube-copper composite fibers.
    Xu G; Zhao J; Li S; Zhang X; Yong Z; Li Q
    Nanoscale; 2011 Oct; 3(10):4215-9. PubMed ID: 21879118
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fabrication, densification, and replica molding of 3D carbon nanotube microstructures.
    Copic D; Park SJ; Tawfick S; De Volder M; Hart AJ
    J Vis Exp; 2012 Jul; (65):. PubMed ID: 22806089
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mechanical and thermal properties of graphyne-coated carbon nanotubes: a molecular dynamics simulation on one-dimensional all-carbon van der Waals heterostructures.
    Li J; Ying P; Liang T; Du Y; Zhou J; Zhang J
    Phys Chem Chem Phys; 2023 Mar; 25(12):8651-8663. PubMed ID: 36891945
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Carbon Hybrid Materials-Design, Manufacturing, and Applications.
    Pujari A; Chauhan D; Chitranshi M; Hudepohl R; Kubley A; Shanov V; Schulz M
    Nanomaterials (Basel); 2023 Jan; 13(3):. PubMed ID: 36770392
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Polyethylenimine carbon nanotube fiber electrodes for enhanced detection of neurotransmitters.
    Zestos AG; Jacobs CB; Trikantzopoulos E; Ross AE; Venton BJ
    Anal Chem; 2014 Sep; 86(17):8568-75. PubMed ID: 25117550
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Strong Carbon Nanotube Fibers by Drawing Inspiration from Polymer Fiber Spinning.
    Alemán B; Reguero V; Mas B; Vilatela JJ
    ACS Nano; 2015 Jul; 9(7):7392-8. PubMed ID: 26082976
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Comparative Study on the Electrical and Piezoresistive Sensing Characteristics of GFRP and CFRP Composites with Hybridized Incorporation of Carbon Nanotubes, Graphenes, Carbon Nanofibers, and Graphite Nanoplatelets.
    Bhandari M; Wang J; Jang D; Nam I; Huang B
    Sensors (Basel); 2021 Nov; 21(21):. PubMed ID: 34770598
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of Applied Pressure on the Electrical Resistance of Carbon Nanotube Fibers.
    Barnett CJ; McGettrick JD; Gangoli VS; Kazimierska E; Orbaek White A; Barron AR
    Materials (Basel); 2021 Apr; 14(9):. PubMed ID: 33919441
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evaluation of carbon nanotube fiber microelectrodes for neurotransmitter detection: Correlation of electrochemical performance and surface properties.
    Yang C; Trikantzopoulos E; Jacobs CB; Venton BJ
    Anal Chim Acta; 2017 May; 965():1-8. PubMed ID: 28366206
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Synthesis and characterization of vertically aligned carbon nanotube forest for solid state fiber spinning.
    Ryu SW; Hwang JW; Hong SH
    J Nanosci Nanotechnol; 2012 Jul; 12(7):5653-7. PubMed ID: 22966627
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Enhancing the tensile properties of continuous millimeter-scale carbon nanotube fibers by densification.
    Hill FA; Havel TF; Hart AJ; Livermore C
    ACS Appl Mater Interfaces; 2013 Aug; 5(15):7198-207. PubMed ID: 23876225
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Carbon Nanotube-Based Microelectrodes for Enhanced Neurochemical Detection.
    Zestos AG; Venton BJ
    ECS Trans; 2017 Oct; 80(10):1497-1509. PubMed ID: 33859773
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Length-dependent carbon nanotube film structures and mechanical properties.
    Zhang L; Ma X; Zhang Y; Bradford PD; Zhu YT
    Nanotechnology; 2021 Apr; 32(26):. PubMed ID: 33730705
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Carbon nanotube-based electrochemical biosensing platforms: fundamentals, applications, and future possibilities.
    Luong JH; Male KB; Hrapovic S
    Recent Pat Biotechnol; 2007; 1(2):181-91. PubMed ID: 19075840
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.