These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 37299932)

  • 41. Microfluidic-integrated laser-controlled microactuators with on-chip microscopy imaging functionality.
    Jung JH; Han C; Lee SA; Kim J; Yang C
    Lab Chip; 2014 Oct; 14(19):3781-9. PubMed ID: 25099225
    [TBL] [Abstract][Full Text] [Related]  

  • 42. 1.05-GHz CMOS oscillator based on lateral- field-excited piezoelectric AlN contour- mode MEMS resonators.
    Zuo C; Van der Spiegel J; Piazza G
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Jan; 57(1):82-7. PubMed ID: 20040430
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effect of actuation sequence on flow rates of peristaltic micropumps with PZT actuators.
    Jang LS; Shu K; Yu YC; Li YJ; Chen CH
    Biomed Microdevices; 2009 Feb; 11(1):173-81. PubMed ID: 18821016
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A self-contained acoustofluidic platform for biomarker detection.
    Chen X; Zhang C; Liu B; Chang Y; Pang W; Duan X
    Lab Chip; 2022 Oct; 22(20):3817-3826. PubMed ID: 36069822
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Microfluidic operations using deformable polymer membranes fabricated by single layer soft lithography.
    Sundararajan N; Kim D; Berlin AA
    Lab Chip; 2005 Mar; 5(3):350-4. PubMed ID: 15726212
    [TBL] [Abstract][Full Text] [Related]  

  • 46. CMOS MEMS Fabrication Technologies and Devices.
    Qu H
    Micromachines (Basel); 2016 Jan; 7(1):. PubMed ID: 30407387
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Integrated Microfluidic Membrane Transistor Utilizing Chemical Information for On-Chip Flow Control.
    Frank P; Schreiter J; Haefner S; Paschew G; Voigt A; Richter A
    PLoS One; 2016; 11(8):e0161024. PubMed ID: 27571209
    [TBL] [Abstract][Full Text] [Related]  

  • 48. On-chip microrobot for investigating the response of aquatic microorganisms to mechanical stimulation.
    Kawahara T; Sugita M; Hagiwara M; Arai F; Kawano H; Shihira-Ishikawa I; Miyawaki A
    Lab Chip; 2013 Mar; 13(6):1070-8. PubMed ID: 23314607
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Microelectromechanical systems and nephrology: the next frontier in renal replacement technology.
    Kim S; Roy S
    Adv Chronic Kidney Dis; 2013 Nov; 20(6):516-35. PubMed ID: 24206604
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Passive Micropump for Highly Stable, Long-Termed, and Large Volume of Droplet Generation/Transport Inside 3D Microchannels Capable of Surfactant-Free and Droplet-Based Thermocycled Reverse Transcription-Polymerase Chain Reactions Based on a Single Thermostatic Heater.
    Li Y; Jiang Y; Wang K; Wu W
    Anal Chem; 2018 Oct; 90(20):11925-11932. PubMed ID: 30215252
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The integration of 3D carbon-electrode dielectrophoresis on a CD-like centrifugal microfluidic platform.
    Martinez-Duarte R; Gorkin RA; Abi-Samra K; Madou MJ
    Lab Chip; 2010 Apr; 10(8):1030-43. PubMed ID: 20358111
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Microfluidic pumping, routing and metering by contactless metal-based electro-osmosis.
    Fu X; Mavrogiannis N; Doria S; Gagnon Z
    Lab Chip; 2015 Sep; 15(17):3600-8. PubMed ID: 26053965
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A microfluidic chip for formation and collection of emulsion droplets utilizing active pneumatic micro-choppers and micro-switches.
    Lai CW; Lin YH; Lee GB
    Biomed Microdevices; 2008 Oct; 10(5):749-56. PubMed ID: 18484177
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Lab-on-CMOS integration of microfluidics and electrochemical sensors.
    Huang Y; Mason AJ
    Lab Chip; 2013 Oct; 13(19):3929-34. PubMed ID: 23939616
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Three dimensional transient multifield analysis of a piezoelectric micropump for drug delivery system for treatment of hemodynamic dysfunctions.
    Nisar A; Afzulpurkar N; Tuantranont A; Mahaisavariya B
    Cardiovasc Eng; 2008 Dec; 8(4):203-18. PubMed ID: 19030990
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Epoxy Chip-in-Carrier Integration and Screen-Printed Metalization for Multichannel Microfluidic Lab-on-CMOS Microsystems.
    Li L; Yin H; Mason AJ
    IEEE Trans Biomed Circuits Syst; 2018 Apr; 12(2):416-425. PubMed ID: 29570067
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A 3D Miniaturized Glass Magnetic-Active Centrifugal Micropump Fabricated by SLE Process and Laser Welding.
    Kim J; Kim S; Choi J; Koo C
    Micromachines (Basel); 2022 Aug; 13(8):. PubMed ID: 36014253
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Micro-optics for microfluidic analytical applications.
    Yang H; Gijs MAM
    Chem Soc Rev; 2018 Feb; 47(4):1391-1458. PubMed ID: 29308474
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Highly Integrated MEMS-ASIC Sensing System for Intracorporeal Physiological Condition Monitoring.
    Xue N; Wang C; Liu C; Sun J
    Sensors (Basel); 2018 Jan; 18(1):. PubMed ID: 29301299
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Flow rate analysis of a surface tension driven passive micropump.
    Berthier E; Beebe DJ
    Lab Chip; 2007 Nov; 7(11):1475-8. PubMed ID: 17960274
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.