These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 37299935)

  • 1. Using Hybrid HMM/DNN Embedding Extractor Models in Computational Paralinguistic Tasks.
    Vetráb M; Gosztolya G
    Sensors (Basel); 2023 May; 23(11):. PubMed ID: 37299935
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Domain Adaptation with Augmented Data by Deep Neural Network Based Method Using Re-Recorded Speech for Automatic Speech Recognition in Real Environment.
    Nahar R; Miwa S; Kai A
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560315
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Machine learning based sample extraction for automatic speech recognition using dialectal Assamese speech.
    Agarwalla S; Sarma KK
    Neural Netw; 2016 Jun; 78():97-111. PubMed ID: 26783204
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comprehensive study on bilingual and multilingual speech emotion recognition using a two-pass classification scheme.
    Heracleous P; Yoneyama A
    PLoS One; 2019; 14(8):e0220386. PubMed ID: 31415592
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multi-resolution speech analysis for automatic speech recognition using deep neural networks: Experiments on TIMIT.
    Toledano DT; Fernández-Gallego MP; Lozano-Diez A
    PLoS One; 2018; 13(10):e0205355. PubMed ID: 30304055
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Filtering Effect of Face Masks in their Detection from Speech.
    Mallol-Ragolta A; Liu S; Schuller BW
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():2079-2082. PubMed ID: 34891698
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Utterance Level Feature Aggregation with Deep Metric Learning for Speech Emotion Recognition.
    Mocanu B; Tapu R; Zaharia T
    Sensors (Basel); 2021 Jun; 21(12):. PubMed ID: 34203112
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A transfer learning approach to goodness of pronunciation based automatic mispronunciation detection.
    Huang H; Xu H; Hu Y; Zhou G
    J Acoust Soc Am; 2017 Nov; 142(5):3165. PubMed ID: 29195422
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Finnish parliament ASR corpus: Analysis, benchmarks and statistics.
    Virkkunen A; Rouhe A; Phan N; Kurimo M
    Lang Resour Eval; 2023 Mar; ():1-26. PubMed ID: 37360261
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ensemble learning with speaker embeddings in multiple speech task stimuli for depression detection.
    Liu Z; Yu H; Li G; Chen Q; Ding Z; Feng L; Yao Z; Hu B
    Front Neurosci; 2023; 17():1141621. PubMed ID: 37034153
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic Acoustic Unit Augmentation with BPE-Dropout for Low-Resource End-to-End Speech Recognition.
    Laptev A; Andrusenko A; Podluzhny I; Mitrofanov A; Medennikov I; Matveev Y
    Sensors (Basel); 2021 Apr; 21(9):. PubMed ID: 33924798
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Histogram of States Based Assistive System for Speech Impairment Due to Neurological Disorders.
    Chandrakala S; Malini S; Veni SV
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():2425-2434. PubMed ID: 34735346
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Paralinguistic singing attribute recognition using supervised machine learning for describing the classical tenor solo singing voice in vocal pedagogy.
    Xu Y; Wang W; Cui H; Xu M; Li M
    EURASIP J Audio Speech Music Process; 2022; 2022(1):8. PubMed ID: 35440938
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Research on Chinese Speech Emotion Recognition Based on Deep Neural Network and Acoustic Features.
    Lee MC; Yeh SC; Chang JW; Chen ZY
    Sensors (Basel); 2022 Jun; 22(13):. PubMed ID: 35808238
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phonetic variability constrained bottleneck features for joint speaker recognition and physical task stress detection.
    Zhang C; Hansen JHL
    J Acoust Soc Am; 2020 Nov; 148(5):2912. PubMed ID: 33261416
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of speech-intrinsic variations on human and automatic recognition of spoken phonemes.
    Meyer BT; Brand T; Kollmeier B
    J Acoust Soc Am; 2011 Jan; 129(1):388-403. PubMed ID: 21303019
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Impact of Speaker Diarization on DNN-based Autism Severity Estimation.
    Eni M; Gorodetski A; Dinstein I; Zigel Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():3414-3417. PubMed ID: 36086547
    [TBL] [Abstract][Full Text] [Related]  

  • 18. I Hear You Eat and Speak: Automatic Recognition of Eating Condition and Food Type, Use-Cases, and Impact on ASR Performance.
    Hantke S; Weninger F; Kurle R; Ringeval F; Batliner A; Mousa Ael-D; Schuller B
    PLoS One; 2016; 11(5):e0154486. PubMed ID: 27176486
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Task-specific feature extraction and classification of fMRI volumes using a deep neural network initialized with a deep belief network: Evaluation using sensorimotor tasks.
    Jang H; Plis SM; Calhoun VD; Lee JH
    Neuroimage; 2017 Jan; 145(Pt B):314-328. PubMed ID: 27079534
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep bottleneck features for spoken language identification.
    Jiang B; Song Y; Wei S; Liu JH; McLoughlin IV; Dai LR
    PLoS One; 2014; 9(7):e100795. PubMed ID: 24983963
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.