These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
170 related articles for article (PubMed ID: 37299979)
1. Lower Limb Exoskeleton for Rehabilitation with Flexible Joints and Movement Routines Commanded by Electromyography and Baropodometry Sensors. Rosales-Luengas Y; Espinosa-Espejel KI; Lopéz-Gutiérrez R; Salazar S; Lozano R Sensors (Basel); 2023 Jun; 23(11):. PubMed ID: 37299979 [TBL] [Abstract][Full Text] [Related]
2. Integration of Inertial Sensors in a Lower Limb Robotic Exoskeleton. Calle-Siguencia J; Callejas-Cuervo M; García-Reino S Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746340 [TBL] [Abstract][Full Text] [Related]
3. Design and analysis of a lightweight lower extremity exoskeleton with novel compliant ankle joints. He Y; Liu J; Li F; Cao W; Wu X Technol Health Care; 2022; 30(4):881-894. PubMed ID: 34657860 [TBL] [Abstract][Full Text] [Related]
4. BioMot exoskeleton - Towards a smart wearable robot for symbiotic human-robot interaction. Bacek T; Moltedo M; Langlois K; Prieto GA; Sanchez-Villamanan MC; Gonzalez-Vargas J; Vanderborght B; Lefeber D; Moreno JC IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1666-1671. PubMed ID: 28814059 [TBL] [Abstract][Full Text] [Related]
5. A generalized framework to achieve coordinated admittance control for multi-joint lower limb robotic exoskeleton. Gui K; Liu H; Zhang D IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():228-233. PubMed ID: 28813823 [TBL] [Abstract][Full Text] [Related]
6. Volition-adaptive control for gait training using wearable exoskeleton: preliminary tests with incomplete spinal cord injury individuals. Rajasekaran V; López-Larraz E; Trincado-Alonso F; Aranda J; Montesano L; Del-Ama AJ; Pons JL J Neuroeng Rehabil; 2018 Jan; 15(1):4. PubMed ID: 29298691 [TBL] [Abstract][Full Text] [Related]
7. Kinematics study of a 10 degrees-of-freedom lower extremity exoskeleton for crutch-less walking rehabilitation. Liu J; He Y; Li F; Cao W; Wu X Technol Health Care; 2022; 30(3):747-755. PubMed ID: 34486995 [TBL] [Abstract][Full Text] [Related]
8. Detection of movement onset using EMG signals for upper-limb exoskeletons in reaching tasks. Trigili E; Grazi L; Crea S; Accogli A; Carpaneto J; Micera S; Vitiello N; Panarese A J Neuroeng Rehabil; 2019 Mar; 16(1):45. PubMed ID: 30922326 [TBL] [Abstract][Full Text] [Related]
9. Intention Detection Using Physical Sensors and Electromyogram for a Single Leg Knee Exoskeleton. Moon DH; Kim D; Hong YD Sensors (Basel); 2019 Oct; 19(20):. PubMed ID: 31615048 [TBL] [Abstract][Full Text] [Related]
10. The Development and Preliminary Test of a Powered Alternately Walking Exoskeleton With the Wheeled Foot for Paraplegic Patients. Ma Q; Ji L; Wang R IEEE Trans Neural Syst Rehabil Eng; 2018 Feb; 26(2):451-459. PubMed ID: 29432112 [TBL] [Abstract][Full Text] [Related]
11. Integration, Sensing, and Control of a Modular Soft-Rigid Pneumatic Lower Limb Exoskeleton. Wang J; Fei Y; Chen W Soft Robot; 2020 Apr; 7(2):140-154. PubMed ID: 31603736 [TBL] [Abstract][Full Text] [Related]
12. Design and evaluation of a modular lower limb exoskeleton for rehabilitation. Dos Santos WM; Nogueira SL; de Oliveira GC; Pena GG; Siqueira AAG IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():447-451. PubMed ID: 28813860 [TBL] [Abstract][Full Text] [Related]
13. Estimation of the Continuous Walking Angle of Knee and Ankle (Talocrural Joint, Subtalar Joint) of a Lower-Limb Exoskeleton Robot Using a Neural Network. Lee T; Kim I; Lee SH Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33923587 [TBL] [Abstract][Full Text] [Related]
14. A Multi-Mode Rehabilitation Robot With Magnetorheological Actuators Based on Human Motion Intention Estimation. Xu J; Li Y; Xu L; Peng C; Chen S; Liu J; Xu C; Cheng G; Xu H; Liu Y; Chen J IEEE Trans Neural Syst Rehabil Eng; 2019 Oct; 27(10):2216-2228. PubMed ID: 31443038 [TBL] [Abstract][Full Text] [Related]
15. Preliminary design and development of a low-cost lower-limb exoskeleton system for paediatric rehabilitation. Narayan J; Kumar Dwivedy S Proc Inst Mech Eng H; 2021 May; 235(5):530-545. PubMed ID: 33588634 [TBL] [Abstract][Full Text] [Related]
17. Optimization of Torque-Control Model for Quasi-Direct-Drive Knee Exoskeleton Robots Based on Regression Forecasting. Xia Y; Wei W; Lin X; Li J Sensors (Basel); 2024 Feb; 24(5):. PubMed ID: 38475041 [TBL] [Abstract][Full Text] [Related]
18. A real-time stable-control gait switching strategy for lower-limb rehabilitation exoskeleton. Guo Z; Wang C; Song C PLoS One; 2020; 15(8):e0238247. PubMed ID: 32853239 [TBL] [Abstract][Full Text] [Related]
19. Model-Based Comparison of Passive and Active Assistance Designs in an Occupational Upper Limb Exoskeleton for Overhead Lifting. Zhou X; Zheng L IISE Trans Occup Ergon Hum Factors; 2021; 9(3-4):167-185. PubMed ID: 34254566 [TBL] [Abstract][Full Text] [Related]
20. An Anthropometrically Parameterized Assistive Lower Limb Exoskeleton. Laubscher CA; Farris RJ; van den Bogert AJ; Sawicki JT J Biomech Eng; 2021 Oct; 143(10):. PubMed ID: 34008845 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]