These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 37300013)
1. Determination of Sugars and Acids in Grape Must Using Miniaturized Near-Infrared Spectroscopy. Cornehl L; Krause J; Zheng X; Gauweiler P; Schwander F; Töpfer R; Gruna R; Kicherer A Sensors (Basel); 2023 Jun; 23(11):. PubMed ID: 37300013 [TBL] [Abstract][Full Text] [Related]
2. Portable NIR-AOTF spectroscopy combined with winery FTIR spectroscopy for an easy, rapid, in-field monitoring of Sangiovese grape quality. Barnaba FE; Bellincontro A; Mencarelli F J Sci Food Agric; 2014 Apr; 94(6):1071-7. PubMed ID: 24037743 [TBL] [Abstract][Full Text] [Related]
3. Non-destructive quantification of key quality characteristics in individual grapevine berries using near-infrared spectroscopy. Cornehl L; Gauweiler P; Zheng X; Krause J; Schwander F; Töpfer R; Gruna R; Kicherer A Front Plant Sci; 2024; 15():1386951. PubMed ID: 39036356 [TBL] [Abstract][Full Text] [Related]
4. Rapid Determination of Wine Grape Maturity Level from pH, Titratable Acidity, and Sugar Content Using Non-Destructive In Situ Infrared Spectroscopy and Multi-Head Attention Convolutional Neural Networks. Kalopesa E; Gkrimpizis T; Samarinas N; Tsakiridis NL; Zalidis GC Sensors (Basel); 2023 Nov; 23(23):. PubMed ID: 38067909 [TBL] [Abstract][Full Text] [Related]
5. Estimation of Sugar Content in Wine Grapes via In Situ VNIR-SWIR Point Spectroscopy Using Explainable Artificial Intelligence Techniques. Kalopesa E; Karyotis K; Tziolas N; Tsakiridis N; Samarinas N; Zalidis G Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772104 [TBL] [Abstract][Full Text] [Related]
6. On-The-Go VIS + SW - NIR Spectroscopy as a Reliable Monitoring Tool for Grape Composition within the Vineyard. Fernández-Novales J; Tardáguila J; Gutiérrez S; Paz Diago M Molecules; 2019 Jul; 24(15):. PubMed ID: 31370313 [TBL] [Abstract][Full Text] [Related]
7. Optimization of NIR spectral data management for quality control of grape bunches during on-vine ripening. González-Caballero V; Pérez-Marín D; López MI; Sánchez MT Sensors (Basel); 2011; 11(6):6109-24. PubMed ID: 22163944 [TBL] [Abstract][Full Text] [Related]
8. Application of near-infrared spectroscopy for the estimation of volatile compounds in Tempranillo Blanco grape berries during ripening. Marín-San Román S; Fernández-Novales J; Cebrián-Tarancón C; Sánchez-Gómez R; Diago MP; Garde-Cerdán T J Sci Food Agric; 2023 Oct; 103(13):6317-6329. PubMed ID: 37195204 [TBL] [Abstract][Full Text] [Related]
9. A rapid qualitative and quantitative evaluation of grape berries at various stages of development using Fourier-transform infrared spectroscopy and multivariate data analysis. Musingarabwi DM; Nieuwoudt HH; Young PR; Eyéghè-Bickong HA; Vivier MA Food Chem; 2016 Jan; 190():253-262. PubMed ID: 26212968 [TBL] [Abstract][Full Text] [Related]
10. Authentication of Tokaj Wine (Hungaricum) with the Electronic Tongue and Near Infrared Spectroscopy. Zaukuu JZ; Soós J; Bodor Z; Felföldi J; Magyar I; Kovacs Z J Food Sci; 2019 Dec; 84(12):3437-3444. PubMed ID: 31762045 [TBL] [Abstract][Full Text] [Related]
11. Determination of technological maturity of grapes and total phenolic compounds of grape skins in red and white cultivars during ripening by near infrared hyperspectral image: a preliminary approach. Nogales-Bueno J; Hernández-Hierro JM; Rodríguez-Pulido FJ; Heredia FJ Food Chem; 2014; 152():586-91. PubMed ID: 24444979 [TBL] [Abstract][Full Text] [Related]
12. Assessment of quality parameters in grapes during ripening using a miniature fiber-optic near-infrared spectrometer. Fernández-Novales J; López MI; Sánchez MT; García-Mesa JA; González-Caballero V Int J Food Sci Nutr; 2009; 60 Suppl 7():265-77. PubMed ID: 19626519 [TBL] [Abstract][Full Text] [Related]
13. Climate effects on physicochemical composition of Syrah grapes at low and high altitude sites from tropical grown regions of Brazil. de Oliveira JB; Egipto R; Laureano O; de Castro R; Pereira GE; Ricardo-da-Silva JM Food Res Int; 2019 Jul; 121():870-879. PubMed ID: 31108820 [TBL] [Abstract][Full Text] [Related]
14. Feasibility study on the use of a portable micro near infrared spectroscopy device for the "in vineyard" screening of extractable polyphenols in red grape skins. Baca-Bocanegra B; Hernández-Hierro JM; Nogales-Bueno J; Heredia FJ Talanta; 2019 Jan; 192():353-359. PubMed ID: 30348402 [TBL] [Abstract][Full Text] [Related]
15. Noninvasive evaluation of the degree of ripeness in grape berries (vitis vinifera L. Cv. Bacchus and silvaner) by chlorophyll fluorescence. Kolb CA; Wirth E; Kaiser WM; Meister A; Riederer M; Pfündel EE J Agric Food Chem; 2006 Jan; 54(2):299-305. PubMed ID: 16417283 [TBL] [Abstract][Full Text] [Related]
16. Non-destructive fluorescence sensing for assessing microclimate, site and defoliation effects on flavonol dynamics and sugar prediction in Pinot blanc grapes. Tomada S; Agati G; Serni E; Michelini S; Lazazzara V; Pedri U; Sanoll C; Matteazzi A; Robatscher P; Haas F PLoS One; 2022; 17(8):e0273166. PubMed ID: 35972948 [TBL] [Abstract][Full Text] [Related]
17. Application of near-infrared spectroscopy/artificial neural network to quantify glycosylated norisoprenoids in Tannat grapes. Boido E; Fariña L; Carrau F; Cozzolino D; Dellacassa E Food Chem; 2022 Sep; 387():132927. PubMed ID: 35421644 [TBL] [Abstract][Full Text] [Related]
19. Changes of polyphenols, sugars, and organic acid in 5 Vitis genotypes during berry ripening. Liang Z; Sang M; Fan P; Wu B; Wang L; Duan W; Li S J Food Sci; 2011; 76(9):C1231-8. PubMed ID: 22416682 [TBL] [Abstract][Full Text] [Related]
20. Comparison of the sugar and organic acid components of seventeen table grape varieties produced in Ankara (Türkiye): a study over two consecutive seasons. Kunter B; Unal OB; Keskin S; Hatterman-Valenti H; Kaya O Front Plant Sci; 2024; 15():1321210. PubMed ID: 38525141 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]