These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 37300018)

  • 1. An Improved Ambiguity Resolution Algorithm for Smartphone RTK Positioning.
    Jiang Y; Gao Y; Ding W; Liu F; Gao Y
    Sensors (Basel); 2023 Jun; 23(11):. PubMed ID: 37300018
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Instantaneous Best Integer Equivariant Position Estimation Using Google Pixel 4 Smartphones for Single- and Dual-Frequency, Multi-GNSS Short-Baseline RTK.
    Yong CZ; Harima K; Rubinov E; McClusky S; Odolinski R
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632180
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Smart Device-Supported BDS/GNSS Real-Time Kinematic Positioning for Sub-Meter-Level Accuracy in Urban Location-Based Services.
    Wang L; Li Z; Zhao J; Zhou K; Wang Z; Yuan H
    Sensors (Basel); 2016 Dec; 16(12):. PubMed ID: 28009835
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tightly-Coupled Integration of Multi-GNSS Single-Frequency RTK and MEMS-IMU for Enhanced Positioning Performance.
    Li T; Zhang H; Niu X; Gao Z
    Sensors (Basel); 2017 Oct; 17(11):. PubMed ID: 29077070
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Tightly Coupled RTK/INS Algorithm with Ambiguity Resolution in the Position Domain for Ground Vehicles in Harsh Urban Environments.
    Li W; Li W; Cui X; Zhao S; Lu M
    Sensors (Basel); 2018 Jul; 18(7):. PubMed ID: 29973573
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Instantaneous, Dual-Frequency, Multi-GNSS Precise RTK Positioning Using Google Pixel 4 and Samsung Galaxy S20 Smartphones for Zero and Short Baselines.
    Yong CZ; Odolinski R; Zaminpardaz S; Moore M; Rubinov E; Er J; Denham M
    Sensors (Basel); 2021 Dec; 21(24):. PubMed ID: 34960412
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Precise and Robust RTK-GNSS Positioning in Urban Environments with Dual-Antenna Configuration.
    Fan P; Li W; Cui X; Lu M
    Sensors (Basel); 2019 Aug; 19(16):. PubMed ID: 31426540
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inherent Limitations of Smartphone GNSS Positioning and Effective Methods to Increase the Accuracy Utilizing Dual-Frequency Measurements.
    Yun J; Lim C; Park B
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560245
    [TBL] [Abstract][Full Text] [Related]  

  • 9. GNSS smartphones positioning: advances, challenges, opportunities, and future perspectives.
    Zangenehnejad F; Gao Y
    Satell Navig; 2021; 2(1):24. PubMed ID: 34870240
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Modified TurboEdit Cycle-Slip Detection and Correction Method for Dual-Frequency Smartphone GNSS Observation.
    Xu X; Nie Z; Wang Z; Zhang Y
    Sensors (Basel); 2020 Oct; 20(20):. PubMed ID: 33050510
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single-Epoch, Single-Frequency Multi-GNSS L5 RTK under High-Elevation Masking.
    Wang K; Chen P; Teunissen PJG
    Sensors (Basel); 2019 Mar; 19(5):. PubMed ID: 30832343
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinematic ME-MAFA for Pseudolite Carrier-Phase Ambiguity Resolution in Precise Single-Point Positioning.
    Liu K; Guo X; Yang J; Li X; Liu C; Tang Y; Meng Z; Yan E
    Sensors (Basel); 2020 Oct; 20(21):. PubMed ID: 33143220
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Real-time Precise Point Positioning with a Xiaomi MI 8 Android Smartphone.
    Chen B; Gao C; Liu Y; Sun P
    Sensors (Basel); 2019 Jun; 19(12):. PubMed ID: 31242704
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Improved Long-Period Precise Time-Relative Positioning Method Based on RTS Data.
    Lu Y; Ji S; Tu R; Weng D; Lu X; Chen W
    Sensors (Basel); 2020 Dec; 21(1):. PubMed ID: 33374254
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Global Navigation Satellite System Real-Time Kinematic Positioning Framework for Precise Operation of a Swarm of Moving Vehicles.
    Kim E; Kim SK
    Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298285
    [TBL] [Abstract][Full Text] [Related]  

  • 16. GNSS Precise Relative Positioning Using A Priori Relative Position in a GNSS Harsh Environment.
    Kim E
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33672979
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Instantaneous Ambiguity Reinitialization and Fast Ambiguity Initialization for L1-L2 GPS Measurements.
    Bakuła M
    Sensors (Basel); 2020 Oct; 20(20):. PubMed ID: 33050162
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multi-GNSS PPP-RTK: From Large- to Small-Scale Networks.
    Nadarajah N; Khodabandeh A; Wang K; Choudhury M; Teunissen PJG
    Sensors (Basel); 2018 Apr; 18(4):. PubMed ID: 29614040
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RTK with the Assistance of an IMU-Based Pedestrian Navigation Algorithm for Smartphones.
    Niu Z; Nie P; Tao L; Sun J; Zhu B
    Sensors (Basel); 2019 Jul; 19(14):. PubMed ID: 31336694
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An Improved Relative GNSS Tracking Method Utilizing Single Frequency Receivers.
    Yang W; Liu Y; Liu F
    Sensors (Basel); 2020 Jul; 20(15):. PubMed ID: 32707822
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.