These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 37300038)

  • 1. A Self-Coordinating Controller with Balance-Guiding Ability for Lower-Limb Rehabilitation Exoskeleton Robot.
    Qin L; Ji H; Chen M; Wang K
    Sensors (Basel); 2023 Jun; 23(11):. PubMed ID: 37300038
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design of a control framework for lower limb exoskeleton rehabilitation robot based on predictive assessment.
    Wang Y; Liu Z; Feng Z
    Clin Biomech (Bristol, Avon); 2022 May; 95():105660. PubMed ID: 35561659
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preliminary assessment of a lower-limb exoskeleton controller for guiding leg movement in overground walking.
    Martinez A; Lawson B; Goldfarb M
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():375-380. PubMed ID: 28813848
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Digital twin rehabilitation system based on self-balancing lower limb exoskeleton.
    Wang W; He Y; Li F; Li J; Liu J; Wu X
    Technol Health Care; 2023; 31(1):103-115. PubMed ID: 35754239
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adaptive sliding-mode controller of a lower limb mobile exoskeleton for active rehabilitation.
    Pérez-San Lázaro R; Salgado I; Chairez I
    ISA Trans; 2021 Mar; 109():218-228. PubMed ID: 33077173
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Robustness and Tracking Performance Evaluation of PID Motion Control of 7 DoF Anthropomorphic Exoskeleton Robot Assisted Upper Limb Rehabilitation.
    Ahmed T; Islam MR; Brahmi B; Rahman MH
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632155
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Multistage Hemiplegic Lower-Limb Rehabilitation Robot: Design and Gait Trajectory Planning.
    Wang X; Wang H; Zhang B; Zheng D; Yu H; Cheng B; Niu J
    Sensors (Basel); 2024 Apr; 24(7):. PubMed ID: 38610521
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bio-inspired control of joint torque and knee stiffness in a robotic lower limb exoskeleton using a central pattern generator.
    Schrade SO; Nager Y; Wu AR; Gassert R; Ijspeert A
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1387-1394. PubMed ID: 28814014
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved Active Disturbance Rejection Control for Trajectory Tracking Control of Lower Limb Robotic Rehabilitation Exoskeleton.
    Aole S; Elamvazuthi I; Waghmare L; Patre B; Meriaudeau F
    Sensors (Basel); 2020 Jun; 20(13):. PubMed ID: 32630115
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design and Control of an Adaptive Knee Joint Exoskeleton Mechanism with Buffering Function.
    Wang Y; Zhang W; Shi D; Geng Y
    Sensors (Basel); 2021 Dec; 21(24):. PubMed ID: 34960484
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ALICE: Conceptual Development of a Lower Limb Exoskeleton Robot Driven by an On-Board Musculoskeletal Simulator.
    Cardona M; García Cena CE; Serrano F; Saltaren R
    Sensors (Basel); 2020 Jan; 20(3):. PubMed ID: 32023988
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design and analysis of a lower limb assistive exoskeleton robot.
    Li X; Wang KY; Yang ZY
    Technol Health Care; 2024; 32(S1):79-93. PubMed ID: 38759039
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development, Dynamic Modeling, and Multi-Modal Control of a Therapeutic Exoskeleton for Upper Limb Rehabilitation Training.
    Wu Q; Wu H
    Sensors (Basel); 2018 Oct; 18(11):. PubMed ID: 30356005
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A real-time stable-control gait switching strategy for lower-limb rehabilitation exoskeleton.
    Guo Z; Wang C; Song C
    PLoS One; 2020; 15(8):e0238247. PubMed ID: 32853239
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Velocity-Based Flow Field Control Approach for Reshaping Movement of Stroke-Impaired Individuals with a Lower-Limb Exoskeleton.
    Martinez A; Lawson B; Goldfarb M
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():2797-2800. PubMed ID: 30440982
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A hybrid active force control of a lower limb exoskeleton for gait rehabilitation.
    Taha Z; Abdul Majeed APP; Zainal Abidin AF; Hashem Ali MA; Khairuddin IM; Deboucha A; Wong Paul Tze MY
    Biomed Tech (Berl); 2018 Jul; 63(4):491-500. PubMed ID: 28809745
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An Assistive Control Strategy for Rehabilitation Robots Using Velocity Field and Force Field.
    Asl HJ; Narikiyo T
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():790-795. PubMed ID: 31374727
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An Intelligent Rehabilitation Assessment Method for Stroke Patients Based on Lower Limb Exoskeleton Robot.
    Zhang S; Fan L; Ye J; Chen G; Fu C; Leng Y
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():3106-3117. PubMed ID: 37490379
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimization of Torque-Control Model for Quasi-Direct-Drive Knee Exoskeleton Robots Based on Regression Forecasting.
    Xia Y; Wei W; Lin X; Li J
    Sensors (Basel); 2024 Feb; 24(5):. PubMed ID: 38475041
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adaptive interaction torque-based AAN control for lower limb rehabilitation exoskeleton.
    Wang Y; Wang H; Tian Y
    ISA Trans; 2022 Sep; 128(Pt A):184-197. PubMed ID: 34716010
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.