These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 37300320)

  • 1. Poly(ε-caprolactone)/bioactive glass composite electrospun fibers for tissue engineering applications.
    Piatti E; Miola M; Liverani L; Verné E; Boccaccini AR
    J Biomed Mater Res A; 2023 Nov; 111(11):1692-1709. PubMed ID: 37300320
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrospun Polyhydroxybutyrate/Poly(ε-caprolactone)/58S Sol-Gel Bioactive Glass Hybrid Scaffolds with Highly Improved Osteogenic Potential for Bone Tissue Engineering.
    Ding Y; Li W; Müller T; Schubert DW; Boccaccini AR; Yao Q; Roether JA
    ACS Appl Mater Interfaces; 2016 Jul; 8(27):17098-108. PubMed ID: 27295496
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrospun PCL/PGS Composite Fibers Incorporating Bioactive Glass Particles for Soft Tissue Engineering Applications.
    Luginina M; Schuhladen K; Orrú R; Cao G; Boccaccini AR; Liverani L
    Nanomaterials (Basel); 2020 May; 10(5):. PubMed ID: 32438673
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of a bioactive glass-polymer composite for wound healing applications.
    Moura D; Souza MT; Liverani L; Rella G; Luz GM; Mano JF; Boccaccini AR
    Mater Sci Eng C Mater Biol Appl; 2017 Jul; 76():224-232. PubMed ID: 28482521
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solvent-dependent properties of electrospun fibrous composites for bone tissue regeneration.
    Patlolla A; Collins G; Arinzeh TL
    Acta Biomater; 2010 Jan; 6(1):90-101. PubMed ID: 19631769
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New generation poly(ε-caprolactone)/gel-derived bioactive glass composites for bone tissue engineering: Part I. Material properties.
    Dziadek M; Menaszek E; Zagrajczuk B; Pawlik J; Cholewa-Kowalska K
    Mater Sci Eng C Mater Biol Appl; 2015 Nov; 56():9-21. PubMed ID: 26249560
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of surface modification on the mechanical and structural properties of nanofibrous poly(ε-caprolactone)/forsterite scaffold for tissue engineering applications.
    Kharaziha M; Fathi MH; Edris H
    Mater Sci Eng C Mater Biol Appl; 2013 Dec; 33(8):4512-9. PubMed ID: 24094153
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis and electrospinning of ε-polycaprolactone-bioactive glass hybrid biomaterials via a sol-gel process.
    Allo BA; Rizkalla AS; Mequanint K
    Langmuir; 2010 Dec; 26(23):18340-8. PubMed ID: 21050002
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antibacterial activity and biocompatibility of zein scaffolds containing silver-doped bioactive glass.
    El-Rashidy AA; Waly G; Gad A; Roether JA; Hum J; Yang Y; Detsch R; Hashem AA; Sami I; Goldmann WH; Boccaccini AR
    Biomed Mater; 2018 Aug; 13(6):065006. PubMed ID: 30088480
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sol-gel derived nanoscale bioactive glass (NBG) particles reinforced poly(ε-caprolactone) composites for bone tissue engineering.
    Lei B; Shin KH; Noh DY; Jo IH; Koh YH; Kim HE; Kim SE
    Mater Sci Eng C Mater Biol Appl; 2013 Apr; 33(3):1102-8. PubMed ID: 23827548
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Incorporation of Calcium Containing Mesoporous (MCM-41-Type) Particles in Electrospun PCL Fibers by Using Benign Solvents.
    Liverani L; Boccardi E; Beltrán AM; Boccaccini AR
    Polymers (Basel); 2017 Oct; 9(10):. PubMed ID: 30965790
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Submicron bioactive glass tubes for bone tissue engineering.
    Xie J; Blough ER; Wang CH
    Acta Biomater; 2012 Feb; 8(2):811-9. PubMed ID: 21945829
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioactive electrospun fibers of poly(glycerol sebacate) and poly(ε-caprolactone) for cardiac patch application.
    Rai R; Tallawi M; Frati C; Falco A; Gervasi A; Quaini F; Roether JA; Hochburger T; Schubert DW; Seik L; Barbani N; Lazzeri L; Rosellini E; Boccaccini AR
    Adv Healthc Mater; 2015 Sep; 4(13):2012-25. PubMed ID: 26270628
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication and characterization of poly-(ε)-caprolactone and bioactive glass composites for tissue engineering applications.
    Mohammadkhah A; Marquardt LM; Sakiyama-Elbert SE; Day DE; Harkins AB
    Mater Sci Eng C Mater Biol Appl; 2015 Apr; 49():632-639. PubMed ID: 25686992
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crosslinked poly(epsilon-caprolactone/D,L-lactide)/bioactive glass composite scaffolds for bone tissue engineering.
    Meretoja VV; Helminen AO; Korventausta JJ; Haapa-aho V; Seppälä JV; Närhi TO
    J Biomed Mater Res A; 2006 May; 77(2):261-8. PubMed ID: 16392138
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Poly(ɛ-caprolactone)/gelatin composite electrospun scaffolds with porous crater-like structures for tissue engineering.
    Hwang PT; Murdock K; Alexander GC; Salaam AD; Ng JI; Lim DJ; Dean D; Jun HW
    J Biomed Mater Res A; 2016 Apr; 104(4):1017-29. PubMed ID: 26567028
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Poly(ε-caprolactone)/poly(glycerol sebacate) electrospun scaffolds for cardiac tissue engineering using benign solvents.
    Vogt L; Rivera LR; Liverani L; Piegat A; El Fray M; Boccaccini AR
    Mater Sci Eng C Mater Biol Appl; 2019 Oct; 103():109712. PubMed ID: 31349433
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The use of thermal treatments to enhance the mechanical properties of electrospun poly(epsilon-caprolactone) scaffolds.
    Lee SJ; Oh SH; Liu J; Soker S; Atala A; Yoo JJ
    Biomaterials; 2008 Apr; 29(10):1422-30. PubMed ID: 18096219
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of the preparation methods on architecture, crystallinity, hydrolytic degradation, bioactivity, and biocompatibility of PCL/bioglass composite scaffolds.
    Dziadek M; Pawlik J; Menaszek E; Stodolak-Zych E; Cholewa-Kowalska K
    J Biomed Mater Res B Appl Biomater; 2015 Nov; 103(8):1580-93. PubMed ID: 25533304
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro/in vivo biocompatibility and mechanical properties of bioactive glass nanofiber and poly(epsilon-caprolactone) composite materials.
    Jo JH; Lee EJ; Shin DS; Kim HE; Kim HW; Koh YH; Jang JH
    J Biomed Mater Res B Appl Biomater; 2009 Oct; 91(1):213-20. PubMed ID: 19422050
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.