These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 37300406)

  • 61. Nerve conduction velocities in hyperlipidemic patients.
    Batur Caglayan HZ; Nazliel B; Irkec C
    Neuro Endocrinol Lett; 2013; 34(7):643-7. PubMed ID: 24463994
    [TBL] [Abstract][Full Text] [Related]  

  • 62. The origin of the premotor potential recorded from the second lumbrical.
    Masakado Y; Abe L; Kawakami M; Suzuki K; Ota T; Kimura A; Takahashi N; Liu M
    Electromyogr Clin Neurophysiol; 2008; 48(1):9-11. PubMed ID: 18338530
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Frequency of Electrodiagnostically Measurable Berrettini Anastomosis.
    Seidel GK; Seidel ME; Hakopian D; Alabdulkarim M; Rahman A; Andary MT; Millis SR
    J Clin Neurophysiol; 2020 May; 37(3):214-219. PubMed ID: 31348110
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Study of nerve conduction and late responses in normal Chinese infants, children, and adults.
    Cai F; Zhang J
    J Child Neurol; 1997 Jan; 12(1):13-8. PubMed ID: 9010790
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Sural nerve conduction studies using ultrasound-guided needle positioning: Influence of age and recording location.
    Scheidegger O; Kihm C; Kamm CP; Rösler KM
    Muscle Nerve; 2016 Nov; 54(5):879-882. PubMed ID: 27061276
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Orthodromic vs antidromic sensory nerve latencies in healthy persons.
    Chodoroff G; Tashjian EA; Ellenberg MR
    Arch Phys Med Rehabil; 1985 Sep; 66(9):589-91. PubMed ID: 4038022
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Near-Nerve Needle Technique Versus Surface Electrode Recordings in Electrodiagnosis of Diabetic Polyneuropathy.
    Kural MA; Pugdahl K; Fuglsang-Frederiksen A; Andersen H; Tankisi H
    J Clin Neurophysiol; 2016 Aug; 33(4):346-9. PubMed ID: 26657238
    [TBL] [Abstract][Full Text] [Related]  

  • 68. A novel method to measure sensory nerve conduction of the supraclavicular nerve.
    Hemmi S; Kurokawa K; Nagai T; Murakami T; Sunada Y
    Muscle Nerve; 2014 Dec; 50(6):1005-7. PubMed ID: 25042692
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Electrophysiologic analysis of snap amplitude in orthodromic and antidromic studies.
    Meythaler JM; Tuel SM; Cross LL; Reichart RT; Wertsch JJ
    Electromyogr Clin Neurophysiol; 1994 Sep; 34(6):323-9. PubMed ID: 8001471
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Spread to the dorsal ulnar cutaneous branch: a pitfall during the routine antidromic sensory nerve conduction study of the ulnar nerve.
    Murashima H; Sonoo M; Tsukamoto H; Kawakami S; Kawamura Y; Hokkoku K; Hatanaka Y; Shimizu T
    Clin Neurophysiol; 2012 May; 123(5):973-8. PubMed ID: 22001168
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Nerve conduction study of ulnar nerve in volleyball players.
    Ozbek A; Bamaç B; Budak F; Yenigün N; Colak T
    Scand J Med Sci Sports; 2006 Jun; 16(3):197-200. PubMed ID: 16643198
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Nerve conduction study in healthy individuals: a preliminary age based study.
    Thakur D; Paudel BH; Jha CB
    Kathmandu Univ Med J (KUMJ); 2010; 8(31):311-6. PubMed ID: 22610736
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Limitations on the clinical utility of the ulnar dorsal cutaneous sensory nerve action potential.
    Dutra de Oliveira AL; Barreira AA; Marques W
    Clin Neurophysiol; 2000 Jul; 111(7):1208-10. PubMed ID: 10880795
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Temperature effect on antidromic and orthodromic sensory nerve action potential latency and amplitude.
    Tashjian EA; Ellenberg MR; Gross N; Chodoroff G; Honet JC
    Arch Phys Med Rehabil; 1987 Sep; 68(9):549-52. PubMed ID: 3632324
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Ring finger sensorial conduction studies in grading carpal tunnel syndrome: Part II.
    Alemdar M
    J Back Musculoskelet Rehabil; 2018; 31(4):759-766. PubMed ID: 29614623
    [TBL] [Abstract][Full Text] [Related]  

  • 76. New criteria for sensory nerve conduction especially useful in diagnosing carpal tunnel syndrome.
    Di Benedetto M; Mitz M; Klingbeil GE; Davidoff D
    Arch Phys Med Rehabil; 1986 Sep; 67(9):586-9. PubMed ID: 3767631
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Can studies of the second lumbrical interossei and its premotor potential reduce the number of tests for carpal tunnel syndrome?
    Therimadasamy AK; Li E; Wilder-Smith EP
    Muscle Nerve; 2007 Oct; 36(4):491-6. PubMed ID: 17654555
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Repeatability of nerve conduction measurements derived entirely by computer methods.
    Kong X; Lesser EA; Gozani SN
    Biomed Eng Online; 2009 Nov; 8():33. PubMed ID: 19895683
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Optimal recording electrode placement for radial motor nerve conduction study using extensor indicis muscle: Cadaver and electrophysiological studies.
    Kwon YH; An H; Kim DH
    Muscle Nerve; 2021 Jun; 63(6):924-927. PubMed ID: 33724497
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Spread of the radial SNAP: a pitfall in the diagnosis of carpal tunnel syndrome using standard orthodromic sensory conduction study.
    Sonoo M; Tsaiweichao-Shozawa Y; Oshimi-Sekiguchi M; Hatanaka Y; Shimizu T
    Clin Neurophysiol; 2006 Mar; 117(3):604-9. PubMed ID: 16403483
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.