BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 37300605)

  • 1. Lateral Filter Array Microfluidic Devices for Detecting Circulating Tumor Cells.
    Chen K; George TJ; Fan ZH
    Methods Mol Biol; 2023; 2679():1-13. PubMed ID: 37300605
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integration of Lateral Filter Arrays with Immunoaffinity for Circulating-Tumor-Cell Isolation.
    Chen K; Dopico P; Varillas J; Zhang J; George TJ; Fan ZH
    Angew Chem Int Ed Engl; 2019 Jun; 58(23):7606-7610. PubMed ID: 30958635
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microfluidic-Based Technologies for CTC Isolation: A Review of 10 Years of Intense Efforts towards Liquid Biopsy.
    Descamps L; Le Roy D; Deman AL
    Int J Mol Sci; 2022 Feb; 23(4):. PubMed ID: 35216097
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Recent advances in isolation and detection of circulating tumor cells with a microfluidic system].
    Cao R; Zhang M; Yu H; Qin J
    Se Pu; 2022 Mar; 40(3):213-223. PubMed ID: 35243831
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfluidics for the Isolation and Detection of Circulating Tumor Cells.
    Sierra-Agudelo J; Rodriguez-Trujillo R; Samitier J
    Adv Exp Med Biol; 2022; 1379():389-412. PubMed ID: 35761001
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Discovery of Novel Circulating Cancer-Related Cells in Circulation Poses New Challenges to Microfluidic Devices for Enrichment and Detection.
    Wu M; Huang Y; Zhou Y; Zhao H; Lan Y; Yu Z; Jia C; Cong H; Zhao J
    Small Methods; 2022 Jul; 6(7):e2200226. PubMed ID: 35595707
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microfluidic Devices for Circulating Tumor Cells Isolation and Subsequent Analysis.
    Khamenehfar A; Li PC
    Curr Pharm Biotechnol; 2016; 17(9):810-21. PubMed ID: 26927214
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Precisely Enumerating Circulating Tumor Cells Utilizing a Multi-Functional Microfluidic Chip and Unique Image Interpretation Algorithm.
    Zhou M; Zheng H; Wang Z; Li R; Liu X; Zhang W; Wang Z; Li H; Wei Z; Hu Z
    Theranostics; 2017; 7(19):4710-4721. PubMed ID: 29187898
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Clinical Microfluidic Chip Platform for the Isolation of Versatile Circulating Tumor Cells.
    Chen H; Han Y; Li Q; Zou Y; Wang S; Jiao X
    J Vis Exp; 2023 Oct; (200):. PubMed ID: 37902316
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wedge-shaped microfluidic chip for circulating tumor cells isolation and its clinical significance in gastric cancer.
    Yang C; Zhang N; Wang S; Shi D; Zhang C; Liu K; Xiong B
    J Transl Med; 2018 May; 16(1):139. PubMed ID: 29792200
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanostructure embedded microchips for detection, isolation, and characterization of circulating tumor cells.
    Lin M; Chen JF; Lu YT; Zhang Y; Song J; Hou S; Ke Z; Tseng HR
    Acc Chem Res; 2014 Oct; 47(10):2941-50. PubMed ID: 25111636
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MagPure chip: an immunomagnetic-based microfluidic device for high purification of circulating tumor cells from liquid biopsies.
    Descamps L; Garcia J; Barthelemy D; Laurenceau E; Payen L; Le Roy D; Deman AL
    Lab Chip; 2022 Oct; 22(21):4151-4166. PubMed ID: 36148526
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microfluidic applications on circulating tumor cell isolation and biomimicking of cancer metastasis.
    Xu X; Jiang Z; Wang J; Ren Y; Wu A
    Electrophoresis; 2020 Jun; 41(10-11):933-951. PubMed ID: 32144938
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NanoVelcro rare-cell assays for detection and characterization of circulating tumor cells.
    Jan YJ; Chen JF; Zhu Y; Lu YT; Chen SH; Chung H; Smalley M; Huang YW; Dong J; Chen LC; Yu HH; Tomlinson JS; Hou S; Agopian VG; Posadas EM; Tseng HR
    Adv Drug Deliv Rev; 2018 Feb; 125():78-93. PubMed ID: 29551650
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel microfluidic device integrating focus-separation speed reduction design and trap arrays for high-throughput capture of circulating tumor cells.
    Lu C; Xu J; Han J; Li X; Xue N; Li J; Wu W; Sun X; Wang Y; Ouyang Q; Yang G; Luo C
    Lab Chip; 2020 Nov; 20(22):4094-4105. PubMed ID: 33089845
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fast and efficient microfluidic cell filter for isolation of circulating tumor cells from unprocessed whole blood of colorectal cancer patients.
    Ribeiro-Samy S; Oliveira MI; Pereira-Veiga T; Muinelo-Romay L; Carvalho S; Gaspar J; Freitas PP; López-López R; Costa C; Diéguez L
    Sci Rep; 2019 May; 9(1):8032. PubMed ID: 31142796
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Capturing and Clinical Applications of Circulating Tumor Cells with Wave Microfluidic Chip.
    Chen H
    Appl Biochem Biotechnol; 2020 Apr; 190(4):1470-1483. PubMed ID: 31782091
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Continuous enrichment of circulating tumor cells using a microfluidic lateral flow filtration chip.
    Lee SW; Hyun KA; Kim SI; Kang JY; Jung HI
    J Chromatogr A; 2015 Jan; 1377():100-5. PubMed ID: 25542705
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent advances in microfluidic technologies for circulating tumor cells: enrichment, single-cell analysis, and liquid biopsy for clinical applications.
    Pei H; Li L; Han Z; Wang Y; Tang B
    Lab Chip; 2020 Nov; 20(21):3854-3875. PubMed ID: 33107879
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of circulating tumor cells from lung cancer patients with multiple biomarkers using high-performance size-based microfluidic chip.
    Gao W; Yuan H; Jing F; Wu S; Zhou H; Mao H; Jin Q; Zhao J; Cong H; Jia C
    Oncotarget; 2017 Feb; 8(8):12917-12928. PubMed ID: 28039472
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.