These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 37300617)
21. Label-free inertial-ferrohydrodynamic cell separation with high throughput and resolution. Liu Y; Zhao W; Cheng R; Puig A; Hodgson J; Egan M; Cooper Pope CN; Nikolinakos PG; Mao L Lab Chip; 2021 Jul; 21(14):2738-2750. PubMed ID: 34018527 [TBL] [Abstract][Full Text] [Related]
22. High-throughput blood cell focusing and plasma isolation using spiral inertial microfluidic devices. Xiang N; Ni Z Biomed Microdevices; 2015 Dec; 17(6):110. PubMed ID: 26553099 [TBL] [Abstract][Full Text] [Related]
23. Microfluidics in structured multimaterial fibers. Yuan R; Lee J; Su HW; Levy E; Khudiyev T; Voldman J; Fink Y Proc Natl Acad Sci U S A; 2018 Nov; 115(46):E10830-E10838. PubMed ID: 30373819 [TBL] [Abstract][Full Text] [Related]
24. Microfluidic cell sorting: a review of the advances in the separation of cells from debulking to rare cell isolation. Shields CW; Reyes CD; López GP Lab Chip; 2015 Mar; 15(5):1230-49. PubMed ID: 25598308 [TBL] [Abstract][Full Text] [Related]
25. Deformability-based cell classification and enrichment using inertial microfluidics. Hur SC; Henderson-MacLennan NK; McCabe ER; Di Carlo D Lab Chip; 2011 Mar; 11(5):912-20. PubMed ID: 21271000 [TBL] [Abstract][Full Text] [Related]
26. Geometry-Dependent Efficiency of Dean-Flow Affected Lateral Particle Focusing and Separation in Periodically Inhomogeneous Microfluidic Channels. Bányai A; Tóth EL; Varga M; Fürjes P Sensors (Basel); 2022 May; 22(9):. PubMed ID: 35591164 [TBL] [Abstract][Full Text] [Related]
27. Ultrahigh-throughput magnetic sorting of large blood volumes for epitope-agnostic isolation of circulating tumor cells. Mishra A; Dubash TD; Edd JF; Jewett MK; Garre SG; Karabacak NM; Rabe DC; Mutlu BR; Walsh JR; Kapur R; Stott SL; Maheswaran S; Haber DA; Toner M Proc Natl Acad Sci U S A; 2020 Jul; 117(29):16839-16847. PubMed ID: 32641515 [TBL] [Abstract][Full Text] [Related]
28. Size-tuneable isolation of cancer cells using stretchable inertial microfluidics. Fallahi H; Yadav S; Phan HP; Ta H; Zhang J; Nguyen NT Lab Chip; 2021 May; 21(10):2008-2018. PubMed ID: 34008666 [TBL] [Abstract][Full Text] [Related]
29. Multistage microfluidic cell sorting method and chip based on size and stiffness. Li G; Ji Y; Wu Y; Liu Y; Li H; Wang Y; Chi M; Sun H; Zhu H Biosens Bioelectron; 2023 Oct; 237():115451. PubMed ID: 37327603 [TBL] [Abstract][Full Text] [Related]
30. Pulsed laser activated cell sorting with three dimensional sheathless inertial focusing. Chen Y; Chung AJ; Wu TH; Teitell MA; Di Carlo D; Chiou PY Small; 2014 May; 10(9):1746-51. PubMed ID: 24536017 [No Abstract] [Full Text] [Related]
31. Microfluidic high-throughput encapsulation and hydrodynamic self-sorting of single cells. Chabert M; Viovy JL Proc Natl Acad Sci U S A; 2008 Mar; 105(9):3191-6. PubMed ID: 18316742 [TBL] [Abstract][Full Text] [Related]
32. Continuous inertial microparticle and blood cell separation in straight channels with local microstructures. Wu Z; Chen Y; Wang M; Chung AJ Lab Chip; 2016 Feb; 16(3):532-42. PubMed ID: 26725506 [TBL] [Abstract][Full Text] [Related]
33. Circulating Tumor Cell Cluster Sorting by Size and Asymmetry. Au SH Methods Mol Biol; 2023; 2679():15-23. PubMed ID: 37300606 [TBL] [Abstract][Full Text] [Related]
34. Influence factors of channel geometry for separation of circulating tumor cells by four-ring inertial focusing microchannel. Liu D; Chen S; Luo X Cell Biochem Funct; 2023 Apr; 41(3):375-388. PubMed ID: 36951265 [TBL] [Abstract][Full Text] [Related]
35. Emerging Microfluidic Technologies for the Detection of Circulating Tumor Cells and Fetal Nucleated Red Blood Cells. Wei X; Chen K; Guo S; Liu W; Zhao XZ ACS Appl Bio Mater; 2021 Feb; 4(2):1140-1155. PubMed ID: 35014471 [TBL] [Abstract][Full Text] [Related]
36. An integrated high-throughput microfluidic circulatory fluorescence-activated cell sorting system (μ-CFACS) for the enrichment of rare cells. Cai K; Mankar S; Ajiri T; Shirai K; Yotoriyama T Lab Chip; 2021 Aug; 21(16):3112-3127. PubMed ID: 34286793 [TBL] [Abstract][Full Text] [Related]
37. Inertia-Acoustophoresis Hybrid Microfluidic Device for Rapid and Efficient Cell Separation. Kim U; Oh B; Ahn J; Lee S; Cho Y Sensors (Basel); 2022 Jun; 22(13):. PubMed ID: 35808206 [TBL] [Abstract][Full Text] [Related]
38. A flexible cell concentrator using inertial focusing. Tu C; Zhou J; Liang Y; Huang B; Fang Y; Liang X; Ye X Biomed Microdevices; 2017 Sep; 19(4):83. PubMed ID: 28894955 [TBL] [Abstract][Full Text] [Related]
39. Efficient separation of tumor cells from untreated whole blood using a novel multistage hydrodynamic focusing microfluidics. Gao R; Cheng L; Wang S; Bi X; Wang X; Wang R; Chen X; Zha Z; Wang F; Xu X; Zhao G; Yu L Talanta; 2020 Jan; 207():120261. PubMed ID: 31594567 [TBL] [Abstract][Full Text] [Related]
40. Continuous CTC separation through a DEP-based contraction-expansion inertial microfluidic channel. Islam MS; Chen X Biotechnol Prog; 2023; 39(4):e3341. PubMed ID: 36970770 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]