BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 37300776)

  • 21. Generation and immunofluorescent validation of gene knockouts in adult human colonic organoids using multi-guide RNA CRISPR-Cas9.
    Chan DKH; Collins SD; Buczacki SJA
    STAR Protoc; 2023 Mar; 4(1):101978. PubMed ID: 36598849
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cell Type Purification by Single-Cell Transcriptome-Trained Sorting.
    Baron CS; Barve A; Muraro MJ; van der Linden R; Dharmadhikari G; Lyubimova A; de Koning EJP; van Oudenaarden A
    Cell; 2019 Oct; 179(2):527-542.e19. PubMed ID: 31585086
    [TBL] [Abstract][Full Text] [Related]  

  • 23. CRISPR/Cas9 for cancer research and therapy.
    Zhan T; Rindtorff N; Betge J; Ebert MP; Boutros M
    Semin Cancer Biol; 2019 Apr; 55():106-119. PubMed ID: 29673923
    [TBL] [Abstract][Full Text] [Related]  

  • 24. CRISPR/Cas9-Mediated Genome Editing of Mouse Small Intestinal Organoids.
    Schwank G; Clevers H
    Methods Mol Biol; 2016; 1422():3-11. PubMed ID: 27246017
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Intranuclear immunostaining-based FACS protocol from embryonic cortical tissue.
    Sakib MS; Sokpor G; Nguyen HP; Fischer A; Tuoc T
    STAR Protoc; 2021 Mar; 2(1):100318. PubMed ID: 33554149
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fluorescence-based methods for measuring target interference by CRISPR-Cas systems.
    Phan PT; Schelling M; Xue C; Sashital DG
    Methods Enzymol; 2019; 616():61-85. PubMed ID: 30691655
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Highly efficient enrichment of porcine cells with deletions induced by CRISPR/Cas9 using dual fluorescence selection.
    He Z; Shi X; Du B; Qin Y; Cong P; Chen Y
    J Biotechnol; 2015 Nov; 214():69-74. PubMed ID: 26200831
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Human glandular organoid formation in murine engineering chambers after collagenase digestion and flow cytometry isolation of normal human breast tissue single cells.
    Huo CW; Huang D; Chew GL; Hill P; Vohora A; Ingman WV; Glynn DJ; Godde N; Henderson MA; Thompson EW; Britt KL
    Cell Biol Int; 2016 Nov; 40(11):1212-1223. PubMed ID: 27590622
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Analysis of canine myeloid-derived suppressor cells (MDSCs) utilizing fluorescence-activated cell sorting, RNA protection mediums to yield quality RNA for single-cell RNA sequencing.
    Jackson K; Milner RJ; Doty A; Hutchison S; Cortes-Hinojosa G; Riva A; Sahay B; Lejeune A; Bechtel S
    Vet Immunol Immunopathol; 2021 Jan; 231():110144. PubMed ID: 33278779
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The epidermal growth factor receptor variant type III mutation frequently found in gliomas induces astrogenesis in human cerebral organoids.
    Kim HM; Lee SH; Lim J; Yoo J; Hwang DY
    Cell Prolif; 2021 Feb; 54(2):e12965. PubMed ID: 33283409
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The future of cerebral organoids in drug discovery.
    Salick MR; Lubeck E; Riesselman A; Kaykas A
    Semin Cell Dev Biol; 2021 Mar; 111():67-73. PubMed ID: 32654970
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A FACS-Free Purification Method to Study Estrogen Signaling, Organoid Formation, and Metabolic Reprogramming in Mammary Epithelial Cells.
    Lacouture A; Jobin C; Weidmann C; Berthiaume L; Bastien D; Laverdière I; Pelletier M; Audet-Walsh É
    Front Endocrinol (Lausanne); 2021; 12():672466. PubMed ID: 34456857
    [TBL] [Abstract][Full Text] [Related]  

  • 33. High-content imaging-based pooled CRISPR screens in mammalian cells.
    Yan X; Stuurman N; Ribeiro SA; Tanenbaum ME; Horlbeck MA; Liem CR; Jost M; Weissman JS; Vale RD
    J Cell Biol; 2021 Feb; 220(2):. PubMed ID: 33465779
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Toward a CRISPR Picture: Use of CRISPR/Cas9 to Model Diseases in Human Stem Cells In Vitro.
    Freiermuth JL; Powell-Castilla IJ; Gallicano GI
    J Cell Biochem; 2018 Jan; 119(1):62-68. PubMed ID: 28544217
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Determining antigen specificity of a monoclonal antibody using genome-scale CRISPR-Cas9 knockout library.
    Zotova A; Zotov I; Filatov A; Mazurov D
    J Immunol Methods; 2016 Dec; 439():8-14. PubMed ID: 27664857
    [TBL] [Abstract][Full Text] [Related]  

  • 36. One-step generation of triple knockout CHO cell lines using CRISPR/Cas9 and fluorescent enrichment.
    Grav LM; Lee JS; Gerling S; Kallehauge TB; Hansen AH; Kol S; Lee GM; Pedersen LE; Kildegaard HF
    Biotechnol J; 2015 Sep; 10(9):1446-56. PubMed ID: 25864574
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Gene-specific FACS sorting method for target selection in high-throughput amplicon sequencing.
    Sandberg J; Neiman M; Ahmadian A; Lundeberg J
    BMC Genomics; 2010 Feb; 11():140. PubMed ID: 20184782
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Crispr-mediated Gene Targeting of Human Induced Pluripotent Stem Cells.
    Byrne SM; Church GM
    Curr Protoc Stem Cell Biol; 2015; 35(Suppl 35):5A.8.1-5A.8.22. PubMed ID: 26949444
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Stem Cell-Based Disease Modeling and Cell Therapy.
    Bai X
    Cells; 2020 Sep; 9(10):. PubMed ID: 33003295
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A protocol for efficient CRISPR-Cas9-mediated knock-in in colorectal cancer patient-derived organoids.
    Okamoto T; Natsume Y; Yamanaka H; Fukuda M; Yao R
    STAR Protoc; 2021 Dec; 2(4):100780. PubMed ID: 34585151
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.